【摘 要】
:
团簇有效连接了原子尺寸和宏观块体,它具有极大的表体比,催化活性高,为研究各种化学反应提供了极好的平台。TiO2在催化等工业领域有重要的实际应用价值,特别是在一定条件下,可以光解离水分子产生清洁的氢气,对于缓解当前能源危机具有重要意义。因此对于TiO2团簇与小分子催化机理的研究成为了一个热点。针对TiO2团簇吸附水分子,本文主要开展了以下两个工作:利用遗传算法结合经验势函数搜索了(TiO2)n(n=
论文部分内容阅读
团簇有效连接了原子尺寸和宏观块体,它具有极大的表体比,催化活性高,为研究各种化学反应提供了极好的平台。TiO2在催化等工业领域有重要的实际应用价值,特别是在一定条件下,可以光解离水分子产生清洁的氢气,对于缓解当前能源危机具有重要意义。因此对于TiO2团簇与小分子催化机理的研究成为了一个热点。针对TiO2团簇吸附水分子,本文主要开展了以下两个工作:利用遗传算法结合经验势函数搜索了(TiO2)n(n=3~6)团簇的基态结构,并用从头计算的方法进行了进一步优化,以能量为判据来判定团簇的最稳定构型。研究表明,遗传算法可以得到团簇的一些新异构体,但由于受经验势描述原子间相互作用比较粗糙或者是经验势所描述的晶相不同等原因的影响,使得遗传算法得到的团簇基态结构不一定是全局最小,因而需要用精确的方法对全部结构进行优化和确认。本文得到的(TiO2)n(n=3-6)团簇的最低能量结构分别是具有Cs、C2v、Cs、C2对称性的具有末端悬挂氧的结构。根据团簇吸附小分子的特点,给出了小分子在团簇表面吸附的遗传算法的现实方案。使用两个广义的遗传算符实现了小分子的全方位旋转和在团簇表面的全空间移动。一个变异算符是通过多次小步长随机移动表征水分子与团簇相对位置的自由度来改变水分子在团簇表面的位置,另一个是小步长随机的改变表征水分子空间趋向的自由度来改变水分子在团簇表面的指向。这两个算符也适用于研究两体甚至多体间相互作用问题。结合经验势搜寻了水分子在(TiO2)n (n=3~6)团簇上的吸附结构,利用密度泛函理论的B3LYP/6-31G**方法对吸附结构进行了进一步优化,并对性质进行了分析。研究显示,水分子以非解离方式通过O原子吸附到团簇中配位数较低的Ti原子上。分子轨道分析表明,虽然吸附后水分子中O、H原子的净电量有所增加,但由于分子轨道的离域化作用,使得O、H之间的成键减弱。吸附后水分子的振动频率发生红移。本文首次将遗传算法应用到了优化团簇吸附小分子的结构,研究结果丰富了目前对TiO2团簇及其吸附水体系的理论研究,为解决水分子在TiO2表面吸附方式的争论提供了理论算例。
其他文献
在社会主义文化事业的发展建设过程之中,能否确保戏剧影视专业人才的持续供给和创新培养是一个极其关键的问题,为此,国内各大艺术院校、艺术院团应当结合时代的发展以及戏剧影视市场对于人才的实际诉求,对自身的教学模式、课程体系设置情况进行科学的调适与安排,以此来提升戏剧影视教育教学活动的实效性,这样将确保实现对戏剧影视创新人才的培养。
所谓人才培养模式,即在一定的教育理念的指导下,为了实现培养目标而采取的培养过程和运行方式。任何一门专业在培养人才的过程中,都需要确立良好的、科学的人才培养模式,这关系到人才的培养质量和学科的可持续发展。如今,在融媒体背景下,我国的戏剧影视表演行业迅猛发展,对于高层次、多元化人才的需求量也越来越大,因此,高校应不断创新戏剧影视表演人才的培养模式,为社会输送更多德才兼备的表演者。
在新文科建设语境下,表演人才培养仍然是学科建设的核心问题。从过往和当下存在的问题两个维度剖析可以发现,中国戏剧理论与实践存在严重脱节。这种现象在教学实践中特别突出,理论与实践近乎各行其是,理论天马行空,实践则"自生自灭",至今没有一套完整且切实可行的教材。文章指出,改变表演人才培养状况已刻不容缓,必须立足根本,在借鉴多元的前提下建设具有中国特色的理论及切合实际的表演教学体系。
量子色动力学(QCD)作为描述强相互作用的标准量子理论原则上是可以解决夸克禁闭问题,但是由于夸克作用的强耦合性,从QCD第一原理研究夸克禁闭比较困难,然而三十年前提出的对偶超导图像可以作为解释QCD中夸克禁闭的一般理论。本文中我们介绍了QCD、对称性自发破缺和联络分解。我们还对AH模型的动力学方程进行了推导,得到对偶G-L方程并对其进行了解析和数值求解,证明当n趋向无穷大时,涡旋趋于墙涡旋。最后把
本文研究具有阶段结构和非线性密度制约的HollingⅢ型捕食者-食饵交错扩散模型解的整体性态.全文共分四节.第一节讨论模型(1)的常微分方程组形式的非负平衡点的稳定性.第二至四节主要研究模型(1)满足齐次Neumann边界条件下解的整体性态.第二节研究弱耦合的反应扩散项的系统(1)(即(1)中的系数αij=0(i,j=1,2,3)).首先应用上下解方法证明该系统解的存在唯一性及其一致有界性,然后应
本文主要讨论具有阶段结构的Lotka-Volterra捕食者-食饵模型及竞争模型Ut=△(d1u+α11u2+α12uv+α13uw)+au-bu-cu2-duv,x∈Ω,t>0, Ut=△(d2u+α21uu+α22u2+α23uw)+u-v,x∈Ω,t>0, (1) Ut=△(d3w+α31uw+α32uw+α33w2)+w((?)e±u-w),x∈Ω,t>0解的整体性态,其中Ω是Rn中有界的
本文利用半序理论,非紧性测度,凝聚映射的不动点定理及锥上的不动点指数理论,讨论了Banach空间中积微分方程两点边值问题的解的存在性.其中本文的主要结果有:一、通过建立新的极大值原理,讨论Banach空间中非线性积微分方程两点边值问题解的存在性,在不假设Banach空间是弱序列完备的情况下,运用上下解的单调迭代方法,研究了积微分方程两点边值问题解的存在性.二、通过线性方程谱半径的论证,在紧性条件下
本文利用算子半群理论,研究了抽象发展方程ω-周期解的存在性,唯一性,正则性和渐近性态,这里假设A为扇形算子f:R×E→X连续,关于t以ω为周期,主要结果如下:一、借助于相应的线性发展方程ω-周期mild解的存在唯一性定理和正则性结果,建立了一般非线性发展方程ω-周期古典解存在的上下解定理,利用正算子半群的特征和单调迭代程序,获得了ω-周期古典解的存在性和唯一性定理.二、利用算子半群的性质和非线性项
本文讨论具有阶段结构的HollingⅡ型捕食者-食饵交错扩散模型解的整体性态,其中Ω(?)Rn为有界光滑区域,η是(?)Ω上的单位外法向量.全文共分四节.第一节讨论模型(1)的常微分方程组形式的非负平衡点的稳定性.第二节讨论弱耦合的反应扩散项的系统(1)(即(1)中的系数αij=0,i,j=1,2,3).首先证明该系统整体解的存在唯一性及其一致有界性,然后应用线性化方法和Lyapunov函数讨论其
本文利用锥上的不动点定理,上下解方法以及拓扑度相关不动点定理讨论了三阶常微分方程两点边值问题解的存在性及唯一性.本文的主要结果有:一、通过建立新的极大值原理,结合上下解的单调迭代方法获得了三阶两点边值问题极值解的存在性结论;进一步,若对非线性项f再增加一个适当的序条件,我们还可获得该问题解的唯一性结论.二、引入Lp—Caratheodory函数的概念,利用Leray-Schauder不动点定理讨论