论文部分内容阅读
超导量子计算是最有希望实现量子计算机的方案之一。近些年来,在理论以及实验方面,超导量子器件发展迅速。目前超导量子计算正在向更高质量、更多比特数目的方向发展。本人自博士入学以来,开始学习超导量子比特的理论以及实验技术,并搭建了超导量子比特的实验软硬件平台。在博士期间,本人主要研究超导相位量子和transmon型量子比特的实验测控以及芯片设计。由于良好的相干性能,transmon型量子比特得到了广泛的使用。本文主要包括了以下内容:1.简要介绍了量子计算的发展历史以及量子算法。对于量子计算中的基本概念以及实现量子计算的物理平台进行简单介绍。着重介绍了超导量子计算的发展历史、国内外发展水平以及今后的发展方向与趋势。2.介绍了超导量子计算的基本理论,简单说明了电路量子化的过程。介绍了 circuitQED的基本理论,尤其是处于色散区域时的行为。针对transmon型量子比特,分析了其能级结构、驱动方法、读取方式与耦合形式。特别地,我们分析了 transmon的量子相干性与电路参数、结构的关系。最后简要说明了超导量子计算的基本芯片设计。3.从低温硬件、常温硬件与计算机软件三个方面对超导量子计算实验平台进行说明。低温硬件方面,包括了稀释制冷机的原理介绍以及低温线路的配置。结合影响transmon相干性的因素以及调控读取方法,我们对低温线路进行详细分析,并给出实际的线路配置。基于transmon的调控需求以及技术手段,我们搭建了常温硬件设备。在软件层面,我们基于LabRAD系统,构建了可扩展的量子比特调控软件平台。4.介绍了 xmon型量子比特的基本参数标定以及调控方法。这些参数包括了读取腔的频率、Q值,比特的频率,相干性参数,以及量子比特与谐振腔耦合的基本参数等。同时介绍了对量子比特进行精确校准的原理与方法。5.在超导相位量子比特中,利用绝热捷径的方法对贝里相位进行测量,同时通过量子层析测量验证了量子态在绝热捷径方案中的演化轨迹。同时,我们在实验和理论上说明了贝里相位在两个方向的噪声下的行为以及其抗噪能力。6.以xmon型超导量子比特为实验平台,针对绝热捷径的量子功的统计行为进行测量与研究。实验上验证了针对绝热捷径的量子功的理论结论:绝热捷径的平均量子功与对应的绝热情况相同,量子功的涨落与量子几何张量存在等式关系。本文的创新点有:1.基于超导量子比特的相干性分析以及调控需求,设计并搭建了超导量子比特的实验测控软硬件平台。2.以超导相位量子比特为实验平台,首次利用绝热捷径对贝里相位进行测量与研究,理论和实验上分析了贝里相位在噪声场中行为。3.在xmon中针对绝热捷径的量子功的统计行为进行测量与研究,并在实验上验证了这部分理论的理论结论。