【摘 要】
:
碳基/铁化合物复合材料可以作为催化剂应用于电催化还原氧还原反应;且具有可以分别调控Fe基化合物和C基底,增强两者的性能协同等优势。本文以Fe配位化合物为设计起点,调控制备碳基/铁化合物复合材料,并研究其电催化氧还原反应。在调控制备具有良好电催化氧还原性能的碳基/铁化合物复合材料的基础上,将制备得到的碳基/铁化合物复合材料作为正极材料应用到锌-空气电池中。具体研究结果如下:(1)通过简单的软模板方法
论文部分内容阅读
碳基/铁化合物复合材料可以作为催化剂应用于电催化还原氧还原反应;且具有可以分别调控Fe基化合物和C基底,增强两者的性能协同等优势。本文以Fe配位化合物为设计起点,调控制备碳基/铁化合物复合材料,并研究其电催化氧还原反应。在调控制备具有良好电催化氧还原性能的碳基/铁化合物复合材料的基础上,将制备得到的碳基/铁化合物复合材料作为正极材料应用到锌-空气电池中。具体研究结果如下:(1)通过简单的软模板方法,利用1,3,5-三甲基苯、乙酰丙酮铁、嵌段共聚物聚醚F127、盐酸多巴胺、超纯水、无水乙醇和氨水调控制备了不同形貌的铁掺杂纳米颗粒(Fe PN)。通过控制合成条件进一步调控样品的形貌。结果显示乙酰丙酮铁、聚合时间和乳化转速影响样品的形貌。研究了在750 oC碳化得到样品的电催化氧还原反应性能(CV和LSV表征),结果表明棒状形貌的样品具有较好的氧还原反应催化活性。(2)使用聚醚F127作为软模板制备了一种棒状铁掺杂纳米棒(Fe PNR)。经过碳化后,合成了Fe3C、氮掺杂多孔碳纳米棒(Fe CNR)。得到的Fe CNR-750的半波电位为0.83 V。同时Fe CNR-750具有优异的耐久性和甲醇耐受性。这种优异的性能归因于结构的优势。当Fe CNR-750作为锌-空气电池正极催化剂时,开路电压为1.42 V和功率密度为126.4 m W cm-2,与商业Pt/C性能接近。(3)通过简单的软模板方法,利用邻苯二酚和对苯二胺作为碳源和氮源,制备了一种铁掺杂花状纳米颗粒(Fe/DLPN)。经过800 oC碳化优化后的Fe3O4/DLCN-800具有优异的电催化活性和稳定性。相对于商业Pt/C,Fe3O4/DLCN-800显示出比20 wt%Pt/C(E1/2=0.81 V)更正的半波电位(E1/2=0.91 V)。同时,Fe3O4/DLCN-800在10000个循环周期后表现稳定。Fe3O4/DLCN-800催化剂可在锌-空气电池中用作正极催化剂,与商业Pt/C作为正极催化剂的锌-空气电池相比,它具有更好的性能。
其他文献
传统化石能源的过度消耗导致了二氧化碳总排放量的迅速增加,引起了各种全球性问题:温室效应、海平面上升、极端天气等,因此,将二氧化碳转化为高附加值产物缓解能源和环境压力非常重要。在光化学、电化学、热化学和生化等方法中,电催化二氧化碳还原(CO2RR)是一种将CO2转化为有利用价值的化学物质和燃料,具有广阔前景的新型催化技术,此反应利用可再生电能作为能量来源,常温常压条件下就可以发生反应,可实现新型碳氢
为了降低癌症的死亡率,人们进行了多项治疗癌症的研究。自从1969年,实验室中发现顺铂可以作为抗肿瘤药物以来,铂类抗肿瘤药物研究就从未停止。人们对铂类抗肿瘤药物研究已取得了很大的成功。目前,铂类配合物是医学临床上常用的抗肿瘤药物,但由于其自身的缺点,如:严重的毒副作用和耐药性等,限制了这类化合物在临床上的进一步发展。近年来,非铂类化合物,如具有d6电子结构的磷光过渡金属铱(Ⅲ)配合物,由于其丰富的光
自从铂类被发现以来,极大地促进了大家对过渡金属配合物抗癌效应的研究[1-2]。但是由于铂类药物的高毒性与耐药性,使得人们去探寻更加高效的抗癌药物。研究证实,过渡金属配合物包括锇、铱、钌被发现具有抗肿瘤活性,这些事实引起了化学家们强烈的探究兴趣。而其中锇配合物因其具有可以发射出较强的近红外荧光,可以抗生物背景干扰,具有高度的光稳定性,发射光谱和激发光谱间的斯托克斯位移较大,长波长的金属转移吸收(ML
随着我国经济不断的发展,能源问题亟待解决,对环保、可持续发展的新能源开拓早已进入中国能源战略的一部分。波浪能作为海洋能的重要能源之一,蕴藏的能量十分巨大,对波浪能的开发和利用的研究将为新能源的开发迎来机遇。与传统的液压式发电和涡轮式发电技术相比,直驱式发电装置无需引入变速机构,直接利用海浪的垂直运动,将捕获的波浪能转化为电能。此类发电装置不仅能够降低设计的复杂度和成本,同时能够消除由变速机构所带来
随着社会的发展,全球能源需求的大幅度增加和化石能源的大量使用,将导致环境污染和化石能源的枯竭。在全球环境污染和能源危机的情况下,急需绿色和可持续能源技术。与风能、光伏、氢能、海洋能、生物质能、地热能、热能和核能等相比,金属燃料电池和氢氧燃料电池因其低成本和绿色清洁等优势,是有效的储能转换技术。金属燃料电池和氢氧燃料电池涉及一系列电化学过程,主要包括氧还原反应(oxygen reduction re
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)由于具有较高的能量转化率、原料丰富以及绿色环保等优势,近年来得到了快速的发展,并广泛应用于车辆,便携式电子设备等领域。质子交换膜燃料电池在阳极上的反应非常快,但是在阴极上,即使在目前最好的基于Pt的催化剂上,其氧还原反应动力学依然缓慢,并且Pt是一种稀有并且昂贵的金属,因此开发廉价并且高效的非贵金
作为一种可再生能源,波浪能具有储能丰富、开发潜力大、能流密度大和开发价值高等优点,并且与许多其它形式的可再生能源相比,开发成本更低。因此,波浪能的开发对缓解甚至解决当前能源需求迅速增加的问题有着重大意义。尽管有着上述优点,波浪能的开发还是存在许多技术问题。比如,环境随机性强,难以高效进行能量捕获;同时,在海洋环境恶劣的情况下,难以有效自我保护。波浪能发电阵列(Wave-EnergyConverte
随着人类社会的快速发展,能源的需求越来越高。然而,传统化石燃料正逐渐枯竭,并且化石燃料的大量使用也造成一系列的环境污染问题,威胁到生态平衡和人类可持续发展。因此,寻找清洁可再生的新能源已成为解决当前能源危机的重要举措。氢气由于其高能量密度、清洁和可再生的特点,是绿色能源最理想的选择。使用太阳能电解水是生产氢气是一种理想的方案。为了提高电解水的效率,需要足够高效、稳定和廉价的催化剂。电解水反应由阴极
波浪能是一种清洁绿色的可再生能源,有着分布广阔和储量巨大的优点。海洋能源的开发与利用可以优化能源结构,是未来发展的重要战略。波浪能具有较高的功率密度,其平均密度高于其它可再生能源。但由于海浪运动的不平稳性、间歇性与分布不均匀等特点,导致对波浪能的收集和二次利用存在着效率低与利用率不高,进而限制了波浪能行业发展。而微电网的发展推动着各种分布式能源的广泛应用,将波浪能整合到微电网可以大大提高波浪能的利
在农业生产中,除草剂扮演着重要的作用,具有巨大的市场。市面上的除草剂种类众多,但由于大规模的长期使用造成很多杂草对其产生了抗药性。如今很多除草剂已经无法达到理想的除草效果,因此研发不易产生抗药性的除草剂变得尤为重要。原卟啉原氧化酶(PPO)类除草剂具有高效、不易产生抗药性的特性。由于该类除草剂针对的靶标原卟啉原氧化酶是一种光合作用酶,其具有除草谱广、对动物毒性小的特点。由此看来原卟啉原氧化酶抑制剂