论文部分内容阅读
观测器设计问题在过去的几十年里一直是控制理论的一个热点问题。在实际工程中,非线性是普遍存在的。针对于非线性系统,很多有效的控制方法正是通过状态反馈来实现的。但是或者由于状态不易测量,或者出于测量设备在经济上和使用上的限制,使得不可能在实际中获得系统的全部状态变量。在这种情况下就需要采用状态观测器来精确重构系统的全部状态信息。对于线性系统,观测器的设计已经非常成熟,Luenberger观测器和Kalman滤波器对于此类问题给出了完善的讨论。但是对于非线性系统,观测器的设计是非常复杂的,仍然没有一个通用的设计方法,必须针对不同的非线性采取不同的设计方法。本文主要讨论了一类Lipschitz非线性系统的状态观测器设计,主要的研究内容如下:(一)输出相对于状态为线性时的情形:①采用基于Lyapunov方程求解的方法给出了此类观测器渐近收敛充分条件的另外一种证明过程,简化了相关文献的讨论。②采用Lyapunov方法给出了观测器渐近收敛的更一般充分条件的另外一种证明,并采用LMI技术进行了观测器增益矩阵的合理选取,使得结论非常直观的同时又使得观测器增益矩阵的选取非常简便。③完全采用LMI技术讨论了此类观测器的设计,使得结果最大程度上减少了盲目性和保守性。并在此基础上给出了求解最大Lipschitz常数的两种算法。(二)输出相对于状态为非线性时的情形:①采用基于Lyapunov方程求解的方法给出了此类观测器渐近收敛的充分条件。②采用求解误差动态方程的方法给出了观测器渐近收敛的更一般的充分条件,扩展了①的结果。③采用Lyapunov方法给出了观测器渐近收敛充分条件的另外一种证明,并采用LMI技术进行了观测器增益矩阵的合理选取,使得结论非常直观的同时又使得观测器增益矩阵的选取非常简便。④完全采用LMI技术讨论了此类观测器的设计,使得结果最大程度上减少了盲目性和保守性。并讨论了使得观测器具有最快收敛速度的增益矩阵的选取。