论文部分内容阅读
金属的严重腐蚀在各种行业中总是导致增加的结构破坏和巨大的经济损失;严重的金属腐蚀还会造成人员伤亡事故,阻碍科学技术和生产的发展。因此采取合理有效的防护措施,减缓材料的腐蚀速度的研究意义重大。有机涂层法是应用最为广泛、经济、有效的一种防腐蚀手段。环氧涂料已被广泛应用于腐蚀性介质的腐蚀保护涂层,归因于其出色的耐化学性,附着力,优异的机械和摩擦强度耐受性。PANI作为导电高分子材料在防腐涂料的基础和应用研究越来越多。由于PANI溶解性差,本身的多孔性、低黏附性,使其必须与其他组分复合才能达到理想防腐效果。涂层的防护性能还取决于其对H2O,O2,Na+,Cl-,SO42-等阻挡屏蔽作用以及对腐蚀抑制作用,其中填料起着至关重要的作用。近年来,石墨烯二维材料改性剂在有机涂层中的作用备受瞩目,利用其二维片层结构在涂料中层层叠加,可形成小分子腐蚀介质(水分子、氯离子等)很难通过的致密隔绝层,起到了突出的物理隔绝作用。本文在引入MoS2纳米片作为阻隔剂的基础上,通过PANI改性MoS2,形成PANI@MoS2纳米粒子,文章中使用了不同方法对纳米材料进行改性,以此获得防腐性能优异的环氧复合涂层。本论文具体研究内容和结论如下:
(1)利用PANI对MoS2进行改性,通过原位聚合和剥离重堆法分别制备了i-PANI@MoS2纳米粒子和g-PANI@MoS2纳米粒子。其中i-PANI@MoS2-7和g-PANI@MoS2-5的MoS2片层表面均被PANI完全覆盖,且纳米粒子大小及分散均匀,改性效果最好。i-PANI@MoS2-7纳米粒子的电导率达到0.765S/cm,而Li+以及PANI的插层,使得g-PANI/MoS2纳米粒子相比于i-PANI@MoS2的电导率更高,g-PANI/MoS2-5达到1.486S/cm。
(2)将i-PANI@MoS2纳米粒子加入环氧树脂,制备一种具有优异防腐性能的EP。i-PANI@MoS2-7在环氧树脂基体中分散均匀,说明PANI的均匀负载将有利于MoS2在EP中的分散。随着PANI配比的增大,i-PANI@MoS2-7/EP具有最大的阻抗值4.66×104?·cm2,最大腐蚀电压-0.110V,最小的腐蚀电流密度2.06×10-7A·cm2,防腐蚀性能优异。随着i-PANI@MoS2-7含量的增大,8%i-PANI@MoS2-7/EP的导电性和阻隔性能最好,接触角最大;8%i-PANI@MoS2-7/EP具有最大的阻抗值5.52×104?·cm2,最大腐蚀电压-0.131V,最小的腐蚀电流密度1.71×10-7A·cm2,表现出最优异的防腐蚀性能;EP涂层的交联密度下降,体系刚性下降,因此EP涂层的初始储能模量降低。i-PANI@MoS2-7的加入可提高EP涂层的残炭率,同时构成导热网络,使得涂层受热均匀,不易发生局部蓄热而造成降解。
(3)g-PANI@MoS2纳米粒子加入环氧树脂,制备一种具有优异防腐性能的EP。g-PANI@MoS2-5纳米粒子在环氧树脂基体中分散均匀,说明PANI的均匀负载将有利于MoS2在EP中的分散。随着PANI配比的增大,g-PANI@MoS2-5/EP具有最大的阻抗值4.76×104?·cm2,最大腐蚀电压-0.091V,最小的腐蚀电流密度2.56×10-6A·cm2,防腐蚀性能优异。随着g-PANI@MoS2-5含量的增大,8%g-PANI@MoS2-5/EP的导电性和阻隔性能最好,接触角最大;8%g-PANI@MoS2-5/EP具有最大的阻抗值5.75×104?·cm2,最大腐蚀电压-0.134V,最小的腐蚀电流密度2.98×10-10A·cm2,表现出最优异的防腐蚀性能;EP涂层的交联密度下降,体系刚性下降,因此EP涂层的初始储能模量降低。g-PANI@MoS2-5的加入可提高EP涂层的残炭率,同时构成导热网络,使得涂层受热均匀,不易发生局部蓄热而造成降解。当添加量相同时,g-PANI@MoS2-5/EPi-PANI@MoS2-7/EP具有更好的防腐蚀性能。
(1)利用PANI对MoS2进行改性,通过原位聚合和剥离重堆法分别制备了i-PANI@MoS2纳米粒子和g-PANI@MoS2纳米粒子。其中i-PANI@MoS2-7和g-PANI@MoS2-5的MoS2片层表面均被PANI完全覆盖,且纳米粒子大小及分散均匀,改性效果最好。i-PANI@MoS2-7纳米粒子的电导率达到0.765S/cm,而Li+以及PANI的插层,使得g-PANI/MoS2纳米粒子相比于i-PANI@MoS2的电导率更高,g-PANI/MoS2-5达到1.486S/cm。
(2)将i-PANI@MoS2纳米粒子加入环氧树脂,制备一种具有优异防腐性能的EP。i-PANI@MoS2-7在环氧树脂基体中分散均匀,说明PANI的均匀负载将有利于MoS2在EP中的分散。随着PANI配比的增大,i-PANI@MoS2-7/EP具有最大的阻抗值4.66×104?·cm2,最大腐蚀电压-0.110V,最小的腐蚀电流密度2.06×10-7A·cm2,防腐蚀性能优异。随着i-PANI@MoS2-7含量的增大,8%i-PANI@MoS2-7/EP的导电性和阻隔性能最好,接触角最大;8%i-PANI@MoS2-7/EP具有最大的阻抗值5.52×104?·cm2,最大腐蚀电压-0.131V,最小的腐蚀电流密度1.71×10-7A·cm2,表现出最优异的防腐蚀性能;EP涂层的交联密度下降,体系刚性下降,因此EP涂层的初始储能模量降低。i-PANI@MoS2-7的加入可提高EP涂层的残炭率,同时构成导热网络,使得涂层受热均匀,不易发生局部蓄热而造成降解。
(3)g-PANI@MoS2纳米粒子加入环氧树脂,制备一种具有优异防腐性能的EP。g-PANI@MoS2-5纳米粒子在环氧树脂基体中分散均匀,说明PANI的均匀负载将有利于MoS2在EP中的分散。随着PANI配比的增大,g-PANI@MoS2-5/EP具有最大的阻抗值4.76×104?·cm2,最大腐蚀电压-0.091V,最小的腐蚀电流密度2.56×10-6A·cm2,防腐蚀性能优异。随着g-PANI@MoS2-5含量的增大,8%g-PANI@MoS2-5/EP的导电性和阻隔性能最好,接触角最大;8%g-PANI@MoS2-5/EP具有最大的阻抗值5.75×104?·cm2,最大腐蚀电压-0.134V,最小的腐蚀电流密度2.98×10-10A·cm2,表现出最优异的防腐蚀性能;EP涂层的交联密度下降,体系刚性下降,因此EP涂层的初始储能模量降低。g-PANI@MoS2-5的加入可提高EP涂层的残炭率,同时构成导热网络,使得涂层受热均匀,不易发生局部蓄热而造成降解。当添加量相同时,g-PANI@MoS2-5/EPi-PANI@MoS2-7/EP具有更好的防腐蚀性能。