论文部分内容阅读
随着国内油田的深入开发,低渗透油藏中的深井、超深井数量越来越多,深层油气资源开发面临高含水、高温、高压、高应力、高二氧化碳等特征,新型井下工具的研发及非常规油藏开发用新型材料越来越成为采油工程的关键。目前作为采油工具用的橡胶密封材料的技术指标尚未满足油田现场苛刻环境的技术需要,开发高性能橡胶密封材料具有重要的理论意义和实际应用价值,对提高我国深层油气资源开发的科学技术水平具有积极的推动作用及战略意义。本工作围绕非常规油气藏储层改造材料面临的关键技术难题,选用多种超高饱和氢化丁腈橡胶(HNBR)为基体材料,研究了热塑性聚氨酯弹性体(TPU)、氢氧化单甲基丙烯酸锌(HZMMA)、硅碳及氟橡胶(FKM)对HNBR的复合改性作用,提出了HNBR复合材料的耐稀氧老化机理,探讨了老化反应动力学,建立了老化反应动力学模型,优化了橡胶复合材料的加工工艺条件,加工出高性能HNBR复合材料。论文工作包含以下四个方面的研究内容:第一部分研究了多种补强剂对HNBR复合材料改性。TPU本身具有优异的力学性能,TPU和HNBR具有较好的相容性。当TPU复合HNBR时,其用量在30 phr时,热塑性聚氨酯弹性体改性的HNBR复合材料的拉伸强度、撕裂强度、100%定伸强度均出现极值现象,其中拉伸强度达29.8 MPa,撕裂强度为46.4N·mm-1,定伸强度为22.7 MPa。硅碳是一种与炭黑结构不同的补强材料,相比于炭黑N550,硅碳补强的HNBR复合材料具有更好的韧性与撕裂强度,扯断伸长率达194.5%,撕裂强度高达38.2 N·mm-1,明显高于N550补强HNBR复合材料的类似性能指标,并且硅碳补强的HNBR复合材料具有更低的永久变形率(2.5%)。第二部分研究HNBR复合材料的稀氧老化行为并完成了HNBR/HZMMA复合材料的寿命预测。补强剂种类对HNBR复合材料表现出不同的耐老化能力。HZMMA增强的HNBR复合材料的耐老化能力最强,其次是N990/HZMMA协同增强型,N990增强型的HNBR复合材料最差。介质温度越高,HZMMA增强型橡胶复合材料的耐老化能力优势愈加明显。HZMMA补强的HNBR复合材料在高温稀氧环境中拉伸强度(σ)随老化时间(t)的指数关系式为σ=a?k t。基于拉伸强度作为老化评价寿命指标,150°C下HZMMA补强的HNBR复合材料在高温稀氧介质的理论寿命约为3年。第三部分研究了超饱和HNBR复合材料的老化机理。HNBR老化胶的FTIR结果表明:随着老化时间的延长,腈基(-C≡N)官能团的特征振动吸收谱带逐渐变弱的同时,3300cm-1和1600cm-1处与-C=NH官能团相关的吸收谱带逐渐变强。高温(>160°C)介质中,与-CN官能团相连的碳原子易失去氢原子生成自由基,自由基立即进攻HNBR大分子中的-C≡N官能团,发生自由基加氢还原反应使-C≡N转化为-C=NH,并形成化学交联键。-CN官能团含量越高,高温越易发生上述化学交联反应,导致耐老化能力变弱。如1000L型HNBR(CN含量44wt%)复合材料在200°C老化后的拉伸强度低于2000L型HNBR(CN含量36wt%)复合材料的拉伸强度,2000LHNBR表现出更好的高温耐老化能力,上述老化机理得到证实。第四部分研究了FKM/HNNR复合材料的相容性、力学性能及热氧老化。FKM/HNNR共混胶的TG、DSC测试结果表明:HNBR基体中含有较少质量份数的FKM的复合材料具有较好的相容性。HNBR中少量FKM橡胶的存在增大了HNBR大分子之间的相对距离,削弱了HNBR大分子间的范德华力,HNBR橡胶复合材料表现出FKM在一定范围内随质量份数的增加,材料的拉伸强度逐渐降低的现象。当二者质量份数比为90/10时,混炼胶的撕裂强度和扯断伸长率同时出现最大值,与交联密度正相关的100%定伸强度出现峰值,同时混炼胶的耐氧老化能力最强。