【摘 要】
:
情绪,是一种与思维、感知和行为相关的精神状态。探索情绪产生的机理以及情绪在各种不同条件和环境下的变化与特性,可以帮助人们更好地理解自己,可以为开发更加自然、友好的人机交互系统提供技术支撑,也可以帮助实现许多精神疾病的客观评估与辅助治疗。跨文化的情绪差异研究同样也是心理学、认知科学、神经科学和精神医学等学科的一个重要研究分支。已经有许多科学研究发现,对于不同文化背景的人群,对情感的理解存在共性与差异
论文部分内容阅读
情绪,是一种与思维、感知和行为相关的精神状态。探索情绪产生的机理以及情绪在各种不同条件和环境下的变化与特性,可以帮助人们更好地理解自己,可以为开发更加自然、友好的人机交互系统提供技术支撑,也可以帮助实现许多精神疾病的客观评估与辅助治疗。跨文化的情绪差异研究同样也是心理学、认知科学、神经科学和精神医学等学科的一个重要研究分支。已经有许多科学研究发现,对于不同文化背景的人群,对情感的理解存在共性与差异性。但是,已有的研究大多停留在定性的分析,缺乏客观和定量的研究。因此,本研究选择了中国人和法国人,进行基于脑电和眼动信号的正向、中性及负向情绪识别的对比研究,探索中法两国被试在脑电与眼动模式上的异同。中国被试的数据来自于公开数据集,因此我们设计了法国人的实验并采集刺激素材,招募了8名法国被试,完成了共计24组实验。实验采集到的脑电及眼动数据将经过预处理、特征提取及特征平滑,并输入分类器进行分类。为了探索中国人与法国人在三类情绪识别方面的异同,我们使用了支持向量机对脑电及眼动信号进行分类,并使用了脑电地形图及功能性脑连接分析算法对中法两国被试的脑电信号进行可视化。为了探索多模态跨文化情绪识别和提升跨文化情绪识别的精度,我们采用深度典型分析的方法将脑电及眼动信号进行融合。为补充训练数据量不足的问题,我们使用了条件生成式对抗网络生成脑电与眼动数据。通过系统的实验比较,我们发现中法被试的脑电特征均在高频段下对三类情绪有更好的区分能力。对于两国不同类型的脑电特征,微分熵特征均是三类情绪识别能获得最高准确率的脑电特征。脑电地形图与功能性脑连接分析的结果从可视化的角度展现了中法被试在高频段脑电模式上的相似之处。使用条件生成式对抗网络则有效地生成了脑电及眼动数据,我们发现脑电特征对于区分正向及中性情绪有优势,而眼动特征则更善于区分负向情绪,在结合两种模态后,中法被试的情绪识别准确率均得到了提升。
其他文献
现代通信设备可能暴露在各种噪声环境中,有效量化终端的噪声抑制效果尤为重要。针对这一问题,ITU-T P.835建议书提出一种主观测试方法,从语音质量S-MOS、残留噪声质量N-MOS、整体抑噪性能G-MOS三个维度进行评价。在客观评价方面,国际上存在ETSI EG 202 396-3、ETSI TS 103 106及ETSI TS 103 281三种评价方法,但其对于中文语音的适用性有待考量。因此
Wi-Fi作为互联网接入的重要技术手段,覆盖范围十分广泛。但近十几年的研究表明,Wi-Fi不仅能支持用户无线上网,还能对用户进行室内定位和人体感知。Wi-Fi信号中的信道状态信息CSI(Channel State Information)能够同时反映信号的幅度与相位变化,其中相位信息反映的信号到达角度Ao A(Angle of Arrival)与天线阵列方向结合可实现定位。此外,人体运动对信号产生
由于不同被试的生理信号之间存在着个体差异性,脑机接口系统在推向大范围现实应用时受到了严重的阻碍。在使用传统的机器学习方法进行跨被试的情绪与疲劳检测时,个体差异性造成的数据分布差异使得模型的精度大幅下降。另一方面,现有的一些方法主要关注迁移学习中的域适应方法,训练个性化模型对新用户进行检测。然而,个性化模型的训练和校准仍然需要付出大量的时间和高昂的成本对新用户进行数据采集,这使得个性化的解决方案效率
在半导体芯片生产流程中,比如氧化、沉积流程,硅片将组批后加工。工件的组批以及批次的调度是个需要联合优化的问题,被称为批处理机调度问题。此外,批处理加工设备昂贵、生产负荷高,需要对设备进行预防性维护。本文研究考虑预防性维护的批处理调度问题,针对批处理机组批、批次调度和预防性维护联合优化问题,建立数学模型并设计求解算法。本文主要讨论两个问题,一个是考虑灵活周期预防性维护的批处理调度问题,另一个是考虑机
现代通信技术中,CP-OFDM(Cyclic-Prefix Orthogonal Frequency Division Multiplexing)是被4G LTE(Long Term Evolution)以及5G NR(New Radio)等标准做为物理层调制波形的高效多载波调制技术。而CP-OFDM技术带外辐射严重,不能有效利用空白频谱资源。因此FBMC-OQAM(Offset Quadratu
随着通信技术的不断发展,通信信号调制手段日新月异,传统的调制识别方法难以满足实际需要。在现代化通信对抗中,及时准确地获取信号的调制方式是进行信息提取和干扰引导的重要前提。论文针对现代通信对抗中的通信侦察系统,立足于实战中“实时+准确”的需要,研究设计了一种融合决策树与高阶累积量的调制识别算法,对侦获的信号进行调制分析。论文致力于分析通信信号的统计特征与频谱特性,并对两个具有递进关系的目标进行了研究
中国5G标准的发布及商用化服务的快速推进,给超高清产业带来极大的助力。直播编解码器作为一个负责对直播信号进行实时编解码处理的工业化软硬件产品,是现有高清直播端到端流程中必不可少的一环。目前业内对超高清直播业务场景评测方法认知尚未普及,从而对业务支撑所需的直播编解码器的评测研究工作相对欠缺。因此,有必要研究一种面向超高清的直播编解码器技术评测方法。本文首先分析和研究了超高清视频,特别是HDR相关技术
当前无线移动通信传输数据呈倍数增长,导致频谱资源紧张的现状。传统无线通信发展基于OSI七层模型,物理层专注于从物理频谱带宽等角度逼近通信容量。同时,传统信源信道联合编码研究已经相对成熟,一定程度上从数据无差错传输角度提升信道容量。然而传统信源信道联合编码仍存在诸多问题。一方面,传统信源信道联合编码问题往往通过分离定律将其分解为信源编码、信道编码等若干步骤。分离定律的基本理论是将通信的母问题分解为多
随着5G时代的来临和物联网(Internet of Things)的飞速发展,物联网智能设备不断普及,且数量飞速增加。各类监控器、感知器、包括人们日常使用的移动智能手机,每时每刻都在产生着大量的数据。硬件性能的提升使得互联网的边缘,大到宏基站,主交换机,小到网关服务器,边缘服务器甚至路由器等设备都具有了一定的计算和存储能力。因此,边缘计算的概念被提出来,将数据的实时计算和预处理从云端迁移到边缘,既
乘法运算一直是数字信号处理中不可或缺的数字逻辑运算操作,也是衡量很多数字信号处理器芯片运算性能的主要评价指标。一方面,为了实现较高的精度,数字信号处理器中通常在运算中使用浮点乘法器来代替定点乘法器。另一方面,近些年来在深度神经网络和一些图像处理等容错应用中,可以通过降低部分计算的精度来降低电路的功耗和提高运算性能。针对上述应用领域,本文在深入调研近似计算理论和乘法器电路结构的基础上,研究了近似乘法