【摘 要】
:
目标跟踪是指对连续图像序列,通过给定初始帧中目标的初始状态(例如位置和范围),估计目标在后续图像序列中的运动轨迹。目标跟踪是计算机视觉领域的研究热点。由于超高分辨率遥感技术的发展,从卫星视频中跟踪目标已成为可能。然而,卫星视频中的目标通常在整个图像上占比很小,与背景过于相似,因此现有的自然视频目标跟踪算法都无法在卫星视频中具有令人满意的精度。光流法能够计算像素点微小运动的光流矢量,从而提取目标的运
论文部分内容阅读
目标跟踪是指对连续图像序列,通过给定初始帧中目标的初始状态(例如位置和范围),估计目标在后续图像序列中的运动轨迹。目标跟踪是计算机视觉领域的研究热点。由于超高分辨率遥感技术的发展,从卫星视频中跟踪目标已成为可能。然而,卫星视频中的目标通常在整个图像上占比很小,与背景过于相似,因此现有的自然视频目标跟踪算法都无法在卫星视频中具有令人满意的精度。光流法能够计算像素点微小运动的光流矢量,从而提取目标的运动信息。背景剪除能够通过背景建模,分割图像中目标与背景。基于光流特征和背景剪除策略在检测目标微小运动方面的巨大潜力,本文提出了针对卫星视频的两种方法:基于光流特征的多帧差卫星视频目标跟踪算法(MOFT)和基于背景剪除策略的卫星视频目标跟踪算法(BSST):(1)在基于光流特征的多帧差卫星视频目标跟踪算法(MOFT)中,将Lucas-Kanade光流法与HSV颜色系统和积分图像融合,引入多帧差方法,实现对卫星视频中目标的精确跟踪。(2)在基于背景剪除策略的卫星视频目标跟踪算法(BSST)中,将高斯混合模型背景剪除方法与积分图方法进行组合,使用多帧差方法进一步提高跟踪性能。
在5个VHR遥感卫星视频数据集的实验表明,与目前最先进的目标跟踪算法相比,本文提出的两种算法能更准确地跟踪目标。其中,基于背景剪除策略的卫星视频目标跟踪算法在微小运动的卫星视频中能够达到更加精确的跟踪性能。
其他文献
随着大数据和人工智能的不断发展,网络系统的设备数量增加,网络系统部署工作量和难度越来越大。运维人员和现场网络配置人员在配置过程中,经常需要做一些重复性的配置工作。传统的网络配置一般需要接口配置、相应链路速度以及网络协议等。在小型网络中,这种情况可以简单容易的实现且基本不会发生错误,一旦发生错误也可较高效的对问题做到解决。但在大型网络中,这显然是一个很繁琐的过程。本文在原有Python技术支持下提出
冲击地压是在煤岩开采过程中发生的动力破坏现象,由于复杂的地质条件和多样的开采方式使冲击地压具有较强地模糊性、非线性。冲击地压灾害的发生往往会造成较大的人员伤亡和财产损失,因此精准地预测冲击地压对于煤岩安全稳定开采具有重要意义。 论文首先分析了煤岩冲击地压前兆特征信号中的声发射信号、应力信号和红外辐射信号的变化规律。针对单一的前兆特征参量不能完整的表征冲击地压发生状态等问题,提取声发射振铃计数和信
随着互联网的不断普及与发展,越来越多的用户选择互联网作为获取信息的第一渠道。与此同时,随着全面小康时代的到来,人民对精神文化娱乐的需求日益增强促进着电影文化产业蓬勃发展。面对互联网中海量的电影及评论数据,利用情感分析技术对评论数据进行分析,挖掘评论文本中隐含的情感倾向与价值趋向,一方面为消费者作出消费决策时提供参考意见,另一方面可以帮助电影创作者了解观众喜好与市场需求,从而创造出更加优秀的电影作品
“一带一路”政策的推行掀起了“汉语热”的狂潮,然而,不少把中文作为第二语言的外国学习者都遇到了汉语学习难的问题。如传统汉语学习模式单一,教学资源缺乏以及语言差异等。人类感知交流是一个多感官过程,视听多模态信息可以有效促进语言的理解与学习。智能辅助语言学习,就是通过为学习者提供有关发音器官运动的指导,增强学习者对发音的理解,更准确地掌握发音规律,从而在一定程度上有效解决了汉语学习难的问题。 考虑到
轻度认知障碍(MCI)是阿尔兹海默症(AD)的前驱阶段,对轻度认知障碍所处阶段的精确诊断具有重要意义。本文旨在通过对静息态功能磁共振成像(rs-fMRI)信号进行直接分析建立诊断不同阶段(早期和晚期)的轻度认知障碍的分类框架,并通过总正确率,特异性(晚期MCI的正确率)和敏感性(早期MCI的正确率)评价其分类性能。 通过应用解剖自动标记(AAL)模板,将受试者的所有fMRI图像分割为116个感兴
差分隐私是一种严格的、可证明的隐私保护方法。与其他隐私模型相比,差分隐私可以成功抵御大多数隐私攻击并为数据集中的单条数据提供隐私保护。信息的实时发布使得越来越多的在线系统挖掘和分析个人的信息,讨论并设计更先进的差分隐私在线学习算法具有非常广泛的实践意义。但现有的差分隐私在线学习方法在适用范围上有很大的局限性,且算法的准确性较低。针对该问题,本文提出一种更通用、更准确的差分隐私在线学习方法。主要内容
广告点击率(Click-through Rate, CTR)预估是在线广告推荐中的一项重要研究任务,它旨在预测用户在广告显示中点击广告的可能性。最近,随着神经网络在很多领域都取得了不错的成绩,越来越多的研究人员提出了基于神经网络的模型用于CTR预估任务中。这些基于神经网络的CTR预估模型一般只通过原始特征去学习低阶和高阶特征交互。然而,原始特征通常都是高维稀疏的这使得神经网络模型很难在大量参数下学
进入21世纪以来,地理分布式的公有云平台已成为最为普及的互联网基础设施。在云平台上部署应用服务具有投入低、性能高、可移植性强等优势,目前已成为互联网公司的首选方案。然而,在进行跨数据中心的应用部署时,由于应用实时性要求高,数据中心间流量大,以及同类应用相互竞争等原因,使得跨数据中心应用的资源管理面临着网络传输实时性难以保障,网络传输费用居高不下,以及竞争环境下资源分配方案难以制定的问题。为此,本文
随着互联网和虚拟化等技术的快速发展,云计算的研究和应用发展迅猛,已经成为当前主流计算模型,为互联网服务、企业应用、科学研究等诸多领域提供多用户弹性服务。同时,云计算在应用过程中存在的问题也暴露出来,特别是“同时满足系统资源利用率与用户体验要求”的难题日趋突出,使得如何在保障用户体验的前提下优化系统的资源管理,成为当前亟待解决的重点问题。本文研究面向用户体验的云计算系统资源管理技术,围绕用户体验保障