【摘 要】
:
照相机和光谱仪的功能广为人知。成像光谱仪就是结合了两者的功能,空间信合和光谱信息都可以通过成像光谱仪获得。由于这种性能,成像光谱仪的运用范围非常大。在本篇论文中,主要讨论的是DMD编码成像光谱仪算法的研究,论文的主要安排如下:1.成像光谱仪以及成像光谱仪的分类、应用和研究现状。引出了编码成像光谱仪。DMD编码成像光谱仪是其中一种方式,并简述了其优点。2.数字微镜DMD是编码成像系统的一个重要器件。
论文部分内容阅读
照相机和光谱仪的功能广为人知。成像光谱仪就是结合了两者的功能,空间信合和光谱信息都可以通过成像光谱仪获得。由于这种性能,成像光谱仪的运用范围非常大。在本篇论文中,主要讨论的是DMD编码成像光谱仪算法的研究,论文的主要安排如下:1.成像光谱仪以及成像光谱仪的分类、应用和研究现状。引出了编码成像光谱仪。DMD编码成像光谱仪是其中一种方式,并简述了其优点。2.数字微镜DMD是编码成像系统的一个重要器件。DMD编码作为编码器件在编码成像光谱仪中有着非常大的优势。DMD编码成像光谱仪的系统原理:双光栅光谱编码结构和单光栅空间编码结构。3.哈达玛矩阵及其相关矩阵的定义和性质,哈达玛矩阵可以转换成循环S矩阵。在DMD编码中,一般使用循环S矩阵,实现0-1编码。哈达玛变换的原理是基于数学统计学中的称重原理。在Matlab上进行了仿真模拟,检测哈达玛变换重建精度非常高。4.简述了压缩感知原理。压缩感知是由信号的稀疏表示、测量矩阵和重建算法三个部分构成的。压缩感知成像光谱仪CASSI是一个单光栅系统,其能够大大的节省需要存储和运输的数据,节省了时间。测量矩阵的性能非常能影响重建质量的好坏,通过仿真测试了测量矩阵的性能。在重建质量方面来说,压缩感知成像光谱仪的精度不是很高。
其他文献
近年来,为更好地满足油气生产需求,各种新技术被陆续引入到水下生产系统中。水下生产系统的工程建设和应急维护需要综合考虑环境、经济、安全等相关因素,很多操作都不被允许实施。因此,本文结合虚拟现实仿真技术、半实物仿真技术与监控技术,对水下生产虚拟现实仿真操作监控系统进行设计与实现,该系统可为无经验的操作人员和管理人员提供丰富的水下施工经验,降低作业风险。本文首先对操作监控系统进行了详细的分析,结合工程建
调制识别是介于信号检测和解调之间的一种非协作通信识别技术,其主要任务是实现对已调信号的智能接收、处理和分类。数字信号识别的准确性关系到国计民生的多个方面,在民用领域调制识别可以实现无线电频谱管理和智能化控制,在军事领域可以实现对敌方情报的监测并保护国家信息安全,经过多年的研究已经获得了许多成果。随着调制方式和信道环境复杂度的提升,如何在低信噪比下精准识别各种调制方式成为一个重要问题。因此,面对未来
物体三维重建已经广泛应用于自动驾驶、3D打印、虚拟仿真以及VR游戏等多种场景,涉及了生物学、神经科学、生态学和农业等多个领域。随着深度学习的发展应用以及大规模三维物体重建数据集的建立,利用深度神经网络从单幅图像中恢复物体三维形状引起了越来越多的关注。现有的深度学习方法通过采用不同的几何表示和不同的深度神经网络框架进行单视图物体三维重建已经获得了不同程度的成功,然而这些工作在重建精度和不同类别物体重
页岩气的勘探开采在近年来成为全球热点。我国也在加快页岩气的开发,这不仅有利于我国向能源清洁转型,也是天然气工业的必然选择。在页岩气藏开发之前,做好产能预测有重要意义。常规的产能预测方法对数据特征的提取不充分,而深度神经网络能够充分学习到数据的特征,使得预测出的产能有较高的可信度。因此可以将深度神经网络应用于页岩气产能预测中,作为产能预测方法的补充。本文基于页岩气藏数值模拟软件生成的大量数据,利用C
逆变器作为一种实现电能转换的核心装置,在各种领域中均占有重要地位。随着微电子技术与现代控制技术的发展,全数字化和智能化是目前逆变器的发展方向。合理的PWM脉冲控制方法和波形数字控制策略的选择与设计能直接影响逆变器系统的总体性能。本文以三相三线逆变器作为研究对象,为实现逆变器的全数字化控制,论文主要做了以下工作:首先,对当前现有的PWM控制技术中对比分析,选择SVPWM控制技术作为三相逆变器的脉冲控
油田智能化是未来石油行业发展的趋势,人工智能技术的进步为各行各业的产业升级带来了新希望。油气集输系统是整个石油地面工程的核心部分,传统的油气集输系统控制依赖于人工PID参数整定和精细化管理,生产流程需要人工检测数据以及手动调整控制参数,操作难度大、存在安全隐患且不具备普适性,同时在油气输送过程中易造成较高能耗、低资源利用率,使得生产成本的陡然上升。因此,本文针对以上问题,提出一种基于强化学习的油气
由于地层的复杂性和隐蔽性,当今钻井作业严重依赖于井上、井下的双向信号传输,以及人类专家的经验决策。然而,针对深井、超深井等复杂井况,高质量的实时信号传输难以实现,且依据理论建立的岩石力学模型不足以支撑实时钻井决策。因此,本文提出了一种基于深度学习的智能导钻方法,有望为地质导向的实时决策提供一种新思路。本文的主要工作包括:(1)提出一种基于特征选择和广角眼机制的感知增强方法。该方法能够提高测井数据质
初至表示地震波最先到达检波器的时刻,是地震资料的一种重要信息。近年来,随着勘探任务的复杂化和勘探规模的扩大化,初至拾取工作面临着很多新的挑战。其中,主要有地震记录的缺道和低信噪比的问题。为此,往往需要引入额外的处理环节,例如插值或者去噪等。这些环节不仅增加了人力物力的消耗,同时也影响着初至拾取结果的准确性。全卷积神经网络是一种被广泛应用于图像、语音领域的深度学习工具。其强大的数据信息挖掘能力和表征
对油田岩心数据进行分析能够帮助人们更好地开发油田,提高油田采收率。随着油气勘探领域技术的不断提高,在油田开发过程中产生的数据呈指数型增长,传统的岩心数据分析方法并不能高效地分析海量的油田生产数据,无法发掘出其中潜在的信息。随着数据挖掘技术在石油领域中的普及,使得通过大数据分析技术对岩心数据进行数据挖掘成为了一项有价值的研究。本文介绍了数据挖掘技术在国内外石油领域中的研究现状,分析了目前将数据挖掘技
火力发电等工业控制领域一直致力于研究历史数据中蕴含的有价值的控制规律,以指导设备运行优化,提高经济效益。但由于工业控制系统组成复杂、参数耦合性较强,针对此类大规模复杂多元的时序控制数据的分析需要结合领域知识进行大量渐进式探索尝试。可视分析技术能够提供灵活的视图交互以支持复杂的数据迭代分析过程,目前已成为此类迭代分析问题的高效探索方法之一。随着对工业控制数据可视分析研究的深入,需要分析的控制过程和参