论文部分内容阅读
本论文针对催化剂生产过程中产生低氨氮废水,采用短程硝化反硝化脱氮技术进行处理,并用炼油厂碱渣废水作为反硝化处理废水的有机碳源,同时研究其机理过程,为工业化应用提供依据。本课题分别采用了A/O反应器和SBR反应器对硝化过程氨氮废水和废碱液降解过程进行了研究。在SBR反应器中,采用模拟废水进行短程硝化-反硝化生物脱氮工艺,控制反应温度在25±1℃、pH值在7.5-8.5之间、DO浓度小于0.5mg/L的条件下,氨氮初始浓度为1000mg/L,其亚硝化率始终维持在98%以上,硝化出水中NO3--N浓度低于5.0mg/L以下,出水氨氮浓度低于检测限,达到了短程硝化反硝化的过程。GC-MS对废碱液中的有机成分进行测定,其主要成分为芳香类化合物,其中酚类物质占84.11%,苯胺类物质占7.79%,硫化物占1.31%。废碱液具有50000mg/L以上的碱度,其B/C=0.29,可生化性较差。在SBR反应器中,采用分批投加废碱液作为反硝化的碳源,在进水COD浓度为1200mg/L,反应器内氨氮浓度为300mg/L的情况下,采用曝气4小时,缺氧2小时的操作条件,使最终出水的氨氮浓度低于检测限,总氮出水浓度为1.69mg/L在短程硝化反硝化运行过程中对有机硫和挥发酚的去除效果同样有效,在SBR间隙式反应器中,有机硫和挥发酚的去除率分别达到92.0%和93.9%;在A/O连续式反应器中有机硫和挥发酚的去除率分别为93.9%和99.6%。说明废碱液中的挥发酚和有机硫等污染物可以作为氨氮反硝化降解时所需的有机碳源而被去除。在同一曝气单元内,曝气阶段使pH下降了0.07时,缺氧阶段使pH上升了0.05。通过曝气阶段和缺氧阶段pH的变化可以看出,反硝化过程产生的碱度不足以弥补硝化阶段碱度的消耗,大约为硝化阶段消耗碱度的一半左右。以废碱液的碱度作为硝化脱氮的碱度,可以弥补短程硝化反硝化过程中碱度的不足,达到废碱液和高氨氮废水的协同处理。A/O系统包括硝化反应和反硝化反应两个反应器,在硝化反应池内利用废碱液的碱度在24小时内将进水300 mg/L的氨氮完全去除,亚硝化率最高可达到90%以上。在反硝化反应池可在8小时内将NOx-N完全降解到检测限以下,达到连续流的短程硝化反硝化过程。控制短程硝化还是全程硝化,其重要的影响因素是如何控制溶解氧的浓度。实验证实,在短程硝化阶段,必需控制溶解氧浓度低于0.5 mg/L,可维持高的亚硝化率。而按传统曝气池控制溶解氧浓度在2.0 mg/L以上,则会导致全程硝化。16S rRNA基因克隆文库法鉴定,短程硝化-反硝化活性污泥中以Nitrosomonas类群的菌种为优势类型,占整个文库的50%左右,其中尤以与Nitrosomonas europaeaATCC25978菌株相似性达到99%的菌株FXHWN-14和与Nitrosomonas halophila菌株相似度达到99%的FXHWN-29为主,这两株菌都属于能将氨氧化成亚硝酸根的氨氧化菌(AOB),具有较强的短程硝化能力。本基础研究与中试试验认为,短程硝化反硝化工艺对氨氮处理效率高,操作简便,运行费用低,符合目前国内催化剂产生的低浓度氨氮污水与炼化污水整合处理的需要。