【摘 要】
:
电子显微成像的结果有时不那么直观,通过模拟研究可以从有限的结果中获得更多的信息。本论文就透射电子显微镜成像模拟方法进行了介绍,研究了离焦、像散下电镜的成像。另外,在多层法基础上提出了全空间力学分析,并将其应用在电子束对样品力学作用的研究中。首先,文中给出了一套模拟离焦图像并通过与实验图像定量对比优化参数的研究方案,分析了带电纳米线在大离焦量下的成像机制,为复杂情况下,共轴全息技术在荷电测量上的应用
论文部分内容阅读
电子显微成像的结果有时不那么直观,通过模拟研究可以从有限的结果中获得更多的信息。本论文就透射电子显微镜成像模拟方法进行了介绍,研究了离焦、像散下电镜的成像。另外,在多层法基础上提出了全空间力学分析,并将其应用在电子束对样品力学作用的研究中。首先,文中给出了一套模拟离焦图像并通过与实验图像定量对比优化参数的研究方案,分析了带电纳米线在大离焦量下的成像机制,为复杂情况下,共轴全息技术在荷电测量上的应用提供了理论支持。电子显微镜中,荷电会影响成像质量,也可反映样品的电学性质,受到人们的关注。电子共轴全息技术可用于荷电的分析,它通过系列离焦图像重建出相位图,并进一步给出样品的带电分布,但需要完全理解正焦图像和离焦图像之间的关系。文中考虑了荷电、内势、像差、相干性对离焦图像的影响,创新性地提出了由样品散射带来的相干性损失,及其模拟方法。研究方案本身也给出了一种利用离焦图像求解荷电的方法。其次,本文解释了磁针法产生的涡旋束在大像散下的成像机制,提出可通过大像散下菲涅尔条纹的扭曲反映磁针的磁化情况,并可进一步分析产生涡旋电子束的质量。涡旋电子束是一种新兴的带有角动量的电子束,其在材料磁性、手性和二色性测量中有应用前景。而磁针法可高效地产生涡旋电子束,但是磁针的磁化常常不够理想,从而使涡旋束的角动量不单一,因此需要对磁针的磁化情况进行判断。我们的研究指出,大像散成像下可以同时观察到涡旋自相干条纹和磁针的形貌,通过模拟像散图像,对自相干条纹的畸变和磁针菲涅尔条纹的扭曲进行了分析。文中提出了多磁单极模型模拟磁针的非均匀磁化情况,模拟结果与实验吻合,从而提出可以通过观察磁针两侧的条纹扭曲周期,判断漏磁的情况和磁化方向的倾斜。本研究提供了一种简单有效的确定磁针磁化情况的方法,可用于评价产生的涡旋电子束质量。第三,对于样品与电子束的力学作用,本文提出了一种全空间力学分析理论,自主开发了一套力学分析工具,为处于发展阶段的电子束操控技术,提供了一种有力的分析工具。该方法基于多层法发展,与多层法一样,具有计算效率高、精度高、样品与束可高度定制化的优势,具有极强的表达能力,可以给出样品内任意位置受到的作用力。文中使用本方法研究了涡旋束对纳米颗粒的作用力和力矩,提出了电子束强度梯度和相位梯度可以驱动纳米颗粒运动的机制,并用力矢量图进行了验证。在研究涡旋电子束对样品力学作用样品深度变化的问题中,论证了本方法的精度优势,分析了角动量随深度震荡的现象。综上,本文综合研究了荷电、非均匀磁化和像差等因素对透射电子显微镜成像的影响,为电子共轴全息在荷电测量方面的应用和磁针法生成涡旋电子束的质量优化两个实际问题提供了理论支持。另外,本文提出了一种分析电子束与纳米材料的力学作用的方法,研究了涡旋电子束与纳米颗粒的力学作用,总结了电子束操控的可能机制。
其他文献
矿产资源产业为世界经济社会发展提供有力支撑和资源保障,中国作为全球矿产资源产业大国,对世界矿产资源生产和供应具有重要影响力。然而,矿产资源产业的高速发展导致资源消耗过快、碳排放过多,使生态环境遭受威胁。提高绿色全要素生产率(GTFP)是中国矿产资源产业摆脱资源枯竭和环境恶化威胁的关键,是实现矿产资源产业高质量发展的重要途径。本文采用2004—2019年中国30个省(区、市)矿产资源产业数据,测算G
硅基涂层具有很多优良的性能,如:耐腐蚀、好的力学性能和生物相容性,气体阻隔性强,热导率高,电导率可控,光学性能好等,这些性能均可通过调控涂层元素组成获得。立足于硅基涂层的组分可调控性和性能多样性,使得此种涂层可以在很多领域得以应用。简单的硅基材料如SiO2,在芯片制造领域已经大量使用,通过添加其它元素如C、N或H等,使其成为最常见的硅基涂层材料。例如:用C原子替代SiO2中部分O原子,形成的SiO
聚丁烯-1(PB-1)是一种高性能聚烯烃材料,由PB-1制成的商品具有高柔韧性,突出的耐环境应力开裂性和耐磨性等优良的物理机械性能。PB-1的性能在很大程度上受其复杂的多晶型行为的影响。本论文选用不同分子量的PB-1均聚物及丁烯-1共聚物作为研究对象,主要利用低场固体核磁共振(LF-NMR)技术,结合示差扫描量热法(DSC)和X射线衍射/散射(WAXD/SAXS)技术,对PB-1的分子链段动力学、
赋予材料自愈合能力有助于应对柔性器件因为反复弯折、拉伸及扭转等造成的机械损伤。但具有本征自愈合能力的聚合物正面临着机械性能与自愈合性能难以兼容的问题。此外,大多数自愈合聚合物都需要人工干预以确保损伤界面完全接触才能发生自愈。基于此,本文将合成能够自发闭合创口的高韧性自愈合聚氨酯作为主要目标。首先,以脂肪族二硫键和基于羧酸的分子间氢键为研究重点,探查了动态键含量和软链段长度对聚氨酯结构和性能的影响;
在当前能源危机和环境污染的大背景下,社会对于清洁能源和储能载体的需求不断扩大,锂离子电池产业迅速发展。镍钴锰(NCM)三元锂离子电池具有能量密度高、循环性能好、制造成本低等优势,发展势头迅猛,应用范围不断扩大。然而,NCM三元锂离子电池安全性较差,其偶发的“热失控”故障往往导致严重的安全事故。此外,使用状态下的电池安全事故频频发生,如高倍率放电等过程中发生的火灾爆炸事故,给人们的生命和财产安全带来
红外发射率是材料的一个重要物理性能,其数值高低对物体的红外辐射(热辐射)行为有很大影响。物体的红外辐射主要由其表面层的红外发射率决定,为了改变材料的辐射特性且兼顾该材料的其它性能,通常在其表面涂覆具有特殊发射率的涂层来改变其红外辐射性能,实现材料在特定场合的应用。红外功能涂层主要分为高红外发射率和低红外发射率涂层两类。高红外发射率涂层主要有两个应用领域:一是作为航天器TPS(热保护系统)最外层材料
癌症作为影响人类健康的“头号杀手”,探索持久且有效的治疗方式成为医学界的重要攻关方向。目前癌症的主流治疗方式包括手术、化疗和放疗,但是这些传统治疗方式在治疗效果上都存在固有缺陷。纳米催化治疗作为一种新兴的治疗手段,能够对肿瘤实现精准的杀伤并且不损伤正常组织,正受到广泛关注。亚铜基纳米催化材料在肿瘤微环境(TME)中能够促进羟基自由基(·OH)的生成和抑制谷胱甘肽(GSH)的过表达,进而提高化学动力
随着锂离子电池在电动汽车上的推广应用,重量轻、高续航的车辆需求推动了动力锂离子电池能量密度和尺寸的增加。大幅面高比能软包锂离子电池及其装配而成的电池包因具有能量密度高的优点受到市场青睐。然而,此类电池热失控引起的相关安全问题仍是制约发展的最大阻碍。当前国内外研究多集中于小容量圆柱型或方型电池,采用的研究方法能否适用于大幅面高比能软包电池还需进一步研究;且高比能的高镍电池(LiNi0.8Co0.1M
本文是对黎曼面上奇异双曲度量的研究,主要包含下面两个部分。一方面,我们用两种方法给出了双曲度量在孤立奇点附近的局部模型。即我们证明了在孤立奇点附近存在复坐标z,使得度量的表达式要么为(4α~2|z|2α-2/(1-|z|2α)~2)|dz|~2,其中 α>0,要么为 |z|-2(In|z|)-2|dz|~2。另一方面,我们提出了下述猜想:位势理论意义下的非双曲型黎曼面上的奇异双曲度量的单值化群在P
页岩作为典型的沉积岩广泛存在于自然地层中,受层理和裂隙发育的影响,各岩层力学性能差异大,页岩体中的地下工程结构易发生变形破坏,严重影响着工程结构的稳定性。页岩矿床开采采场围岩的变形规律、应力分布、损伤特征是影响矿床开采安全的主要因素。因此,借助理论分析、物理相似模拟试验和数值模拟试验等手段,研究采场变形特征、应力状态、破坏模式和支护形式,是页岩矿床安全开采的岩体力学关键问题。以某典型缓倾斜页岩矿床