论文部分内容阅读
本论文主要针对目前严峻的环境污染问题,基于无线磁弹性传感器的质量响应原理并结合纳米技术,探索病原菌和持久性有机污染物的无线传感分析检测方法。无线磁弹性传感技术是基于磁致伸缩原理设计的,传感器由非晶态磁性材料和激励/检测线圈组成,在外加交变磁场中,磁性膜片受磁场激发产生磁矩,将磁能转换为机械能,并产生沿长度方向的伸缩振动,即磁致伸缩。当交变磁场的频率与磁性膜片机械振动频率相等时,膜片会产生共振,具有最大振幅,此时的振动频率即为磁性膜片共振频率。当磁性膜片传感器所浸入的检测溶液性质(黏度、密度等)或传感器表面负载质量发生变化时,其共振频率也会随之改变。磁传感器随其表面负载质量变化而变化的特性即为磁传感器的质量响应原理。由于磁性膜片本身是磁性的,其伸缩振动产生的磁通可通过检测线圈检测出。磁弹性传感器中信号的激发与传送通过磁场进行,传感器与检测仪器之间没有任何物理连接,属于无线无源传感器。磁弹性传感器这一特征使其在活体、在体分析、密闭容器中的无菌、无损检测等领域具有广泛的应用前景。随着纳米技术的发展,纳米材料因具有尺寸小、比表面积大等特性已开始渗入环境领域检测分析当中。.结合纳米粒子的特性和磁传感器无线无源的特点,开展环境中污染物的检测研究将是一件重大而有意义的工作。基于这个创新,本文主要做了以下三方面的应用研究工作:1)病原菌——大肠杆菌无线传感分析:以大肠杆菌为例,制备了磁弹性病原菌无线传感器;基于壳聚糖包裹的Fe3O4纳米粒子(CMNPs)与大肠杆菌的等电点不同,在一定的pH条件下,两者因带异种电荷而互相吸引,形成带磁性的病原体,再借助外加磁场的作用吸附到聚氨酯保护涂层的磁传感器表面,导致磁传感器负载质量增加,引起传感器共振频率减小;考察了不同CMNPs浓度对传感器响应的贡献,证实了交联剂戊二醛的引入能提高检测细菌的灵敏度;利用扫描电镜和透射电镜观察了细菌-CMNPs复合物在磁传感器表面的吸附情况,并获得了传感器对大肠杆菌的检测线性范围(10-3.7×108 cells mL-1),检测下限能达到10cells mL-1;基于CMNPs对大肠杆菌的静电吸附原理,考察了带电大分子(蛋白质)和较小分子(氨基酸及环境有机污染物)对传感器的干扰情况。结果表明,该方法对病原菌的检测有一定的选择性,在食品领域中检测病原菌具有广泛的应用前景。2)多环芳烃(PAHs)无线传感分析:采用腐植酸/壳聚糖复合物作为敏感层,以腐植酸(humic acid,HA)包裹的Fe304纳米粒子(HMNPs)作为信号放大工具,利用HA的疏水空腔对脂溶性PAHs的特异吸附性及包合性,在传感器表面形成HA/PAH/HMNPs的三明治结构,从而增加磁传感器的负载质量,导致其共振频率的下降;考察了磁传感器表面不同涂层,不同浓度的HMNPs以及体系pH对传感器响应信号的影响,获得了该传感器对六种美国优先监控的PAHs的检测线性范围和检测下限;由于PAHs结构上的差异,该方法对PAHs中的苯并芘和蒽的检测表现出一定的选择性,结果表明,苯并芘和蒽的检测下限分别可以达到3 nm和5 nm,表现出较高的灵敏度;同时考察了传感器对水环境中具有代表性的金属离子和有机污染物的响应情况,以此研究该传感器对PAHs的检测特异性。该传感器可用于水体中PAHs的分析研究,并具有富集PAHs的应用前景。3)苯并[a]芘(benzo[a]pyrene, BaP)无线传感分析:在PAHs无线传感器研究的基础上,改用氨基修饰的杯[4]芳烃作为敏感膜以提高其对特定PAHs的选择性。采用杯[4]芳烃修饰的金纳米颗粒作为信号放大工具,利用杯[4]芳烃的疏水空穴对BaP的特异包合作用,在磁传感器表面形成杯[4]芳烃/BaP/杯[4]芳烃-金纳米粒子的三重包合配合物,增加磁传感器的负载质量,获得对传感器响应信号的放大,检测下限达1.O×10-11M;考察了传感器对其他PAHs及水体中其他污染物的响应情况。中性有机物与杯[4]芳烃形成稳定性包合配合物取决于客体有机物分子结构与主体杯[4]芳烃疏水空穴的匹配情况,分析主体-客体分子结构可知,本实验选用的氨基修饰的杯[4]芳烃能与BaP形成稳定的2:1的包合配合物,因而对其表现出很好的选择性。所构筑的传感器能进行水样中BaP的检测。