论文部分内容阅读
在电化学应用技术中,耐酸阳极材料的选择和制备一直是电化学工业的难题之一,高性能的阳极材料应当具有导电性能好、耐氧化、耐腐蚀、使用寿命长、催化活性高和成本低等优点。在强酸性溶液中,由于酸的腐蚀性和阳极氧析出的强氧化性,致使阳极材料的选择很困难。因此选择合适的耐酸性阳极材料将是一个非常有实际意义的课题。有关耐酸性阳极材料的选择,阀金属钛是目前国内外公认的最佳基体材料。钛具有密度小、机械强度高、耐腐蚀、导电性好和廉价等优点。非贵金属半导体氧化物PbO2、SnO2、MnO2等具有较好耐腐蚀性和较高的电催化活性,适用于做阳极材料的活性层。因此,钛基氧化物(Ti/MO2)在环境污染物去除、电化学合成等工业生产中是广泛应用的阳极材料之一。但该类电极存在的明显问题是:①由于阳极放出活性氧,扩散到基体表面形成TiO2绝缘体使电极导电能力降低;②钛基体与表面活性层的结合力差,特别是当TiO2绝缘体生成后,基体与活性层的机械结合力减弱,致使表面活性层脱落,在强腐蚀性的酸性溶液中尤其严重。本文认为加入氧化物(SnO2、Sb2O4、MnO2等)形成固溶体氧化物中间层可增强钛基体和活性层(MnO2、SnO2和PbO2)之间的粘结力和导电性,同时也可增加阳极的机械强度和耐腐蚀性能,这可有效解决以上问题。本文首先采用了热分解、电沉积等方法及其组合技术制备出具有多元非贵金属氧化物中间层的电极,对氧化物中间层及活性层进行了表征,同时探讨了掺杂半导体氧化物固溶体的形成机制,主要研究了多元氧化物中间层形成的匹配固溶体在电极中的作用,探讨了晶体构型等因素对固溶体形成的影响和固溶体中间层形成过程中产生的晶体缺陷、氧空位对电极导电性能的影响,并考察了上述电极的使用寿命和电催化性能。其次将分形几何理论引入钛基氧化物电极体系,探讨了氧化物电极表面的分形维数和电催化性能之间的关系。最后将该类电极应用于含酚有机废水处理及电解还原偏硼酸钠制备硼氢化钠体系,考察了该类氧化物电极的电催化等综合性能,为耐酸阳极的工业化提供理论依据。主要研究内容及结论如下:1.选择金属钛为基体,非贵金属半导体氧化物(SnO2、Sb2O4、MnO2等)为中间过渡层材料,MnO2、SnO2和PbO2为活性层,采用热分解、电沉积和溶胶-凝胶及其组合技术制备了具有多元氧化物中间过渡层的Ti/PbO2、Ti/MnO2及Ti/SnO2阳极,利用SEM、XRD、XPS等技术对上述电极表面形貌、结构物相、组成价态进行了表征;采用快速寿命法考察了氧化物电极在1.0 mol/L H2SO4溶液中4A/cm2下的预期使用寿命。同时探讨了电极在酸性溶液中的电催化性能。研究结果表明:①用溶胶凝胶法制备出了纳米级的一元锑掺杂的Ti/SnO2电极,最佳烧结温度为600℃,SbCl3最佳掺入量为4%。加速寿命实验表明电极使用寿命较长,动力学测试表明该电极是一种高析氧过电位的电极材料,同时探讨了Ti/SnO2+Sb2O4电极在酸性溶液中的析氧机理。②用热分解和电沉积法分别制备出具有多元氧化物中间层的Ti/PbO2电极,该电极的活性层(Pb3O4和β-PbO2)成菜花蘑菇状,其表面积大催化活性优良。稀土铈、钇掺杂的三元中间层的PbO2电极寿命较长,电催化性能良好,该类电极在酸性溶液中的使用寿命和放氧动力学参数比单质铅电极优越。③用热分解法制备出具有不同多元中间层的Ti/MnO2电极,该电极的活性层是β-MnO2,该电极在酸性溶液中放氧特性优良,a、b值普遍比贵金属的小,i0值较大,过电位小,其中Ti/SnO2+RuO2+MnO2/MnO2电极的析氧是SN1反应机理,电极的析氧活化能(8KJ/mol)比PtO2(60.67KJ/mol)和Pt/MnO2(18.83KJ/mol)电极均低,是酸性溶液中低析氧过电位的理想材料。④具有二元SnO2+Sb2O4固溶体中间层的Ti/MO2阳极是用于酸性溶液中不同析氧体系的较理想的阳极材料。Ti/SnO2+Sb2O4/MnO2、Ti/SnO2+Sb2O4/PbO2和Ti/SnO2+Sb2O4阳极在1.0mol/L H2SO4中的析氧起始电位依次增大,分别为1.701V、1.860V和1.918V,因此Ti/SnO2+Sb2O4/PbO2和Ti/SnO2+Sb2O4阳极在酸性溶液中析氧电位较高,适用于阳极氧化的电化学体系;Ti/SnO2+Sb2O4/MnO2有较低的析氧电位,比较适合于阳极析氧的电化学体系。⑤一元Sb2O4中间层、二元SnO2+Sb2O4中间层、三元SnO2+Sb2O4+MO2(M=Ru、Mn)中间层分别是Ti/SnO2、Ti/PbO2和Ti/MnO2电极中较匹配的中间层材料。其中,二元SnO2+Sb2O4(56%Sb2O3和44%Sb2O5)中间层能与相同晶体构型的铅锰活性层及二氧化钛形成良好的匹配固溶体,该固溶体生长过程的活化能较低(约13.965kJ/mol),形成的固溶体中间层表面晶粒均匀细小、结合紧密无裂缝,可有效阻止新生态氧原子的扩散,减少二氧化钛绝缘层的形成,从而延长电极的使用寿命。其作为中间层的Ti/SnO2+Sb2O4/PbO2、Ti/SnO2+Sb2O4+MO2(M=Ru、Mn)/MnO2和Ti/SnO2+Sb2O4阳极在工业电流密度(1000A/m2)下的预期使用寿命可分别达到15.7y、10.6y及4.6y。同时固溶体在形成过程中产生的晶体缺陷、氧空位增强了电极的导电性能,具有该固溶体中间层的Ti/PbO2在相同电流密度下比单纯的用Pb作阳极节约电能17%,因此电极的综合性能明显提高。2.电极表面的粗糙程度是影响电极性能的一个重要因素。本文根据分形几何理论首次采用盒维数法计算了钛基氧化物电极表面的分形维数,并用该维数定量描述电极表面的粗糙程度。同时利用不同扫描速度下的循环伏安图形,根据扫描速度与峰电流的双对数关系测定了氧化物电极的分形维数。最后探讨了氧化物电极的分形维数和电催化性能之间的关系。将分形几何理论与电极材料的电催化性能相关联,为深入研究电催化剂提供了一条新的思路。研究结果表明:具有固溶体中间层的钛基氧化物电极是一类多孔三维电极,其分形维数介于2~3之间。由盒维数方法计算的钛基氧化物电极表面的分形维数大小顺序为:Ti/RuO2>Ti/MnO2>Ti/PbO2,析氧电催化性能也按照同样的顺序呈现一定的规律。采用循环伏安方法测定的分形维数是Ti/PbO2电极的较高,这与该电极的表面形貌相吻合,此两类方法各有其特点,都可以用来构建电极的表面形态和电化学性能之间的关系。3.将溶胶凝胶法制备的钛基二氧化锡电极用于含酚废水处理,考察了锑掺杂量和电极的焙烧温度等因素对含酚废水处理效果的影响,计算了在该电极上苯酚氧化的动力学参数和活化能;采用热分解和电沉积组合技术制备了具有多元氧化物过渡层的钛基二氧化铅电极并用于处理含酚废水体系,研究了其动力学规律,考察了各种因素对废水处理效率的影响;同时考察了Ti/MnO2和不锈钢/MnO2电极在光电催化条件下苯酚的降解转化率。结果表明:具有固溶体氧化物中间层的Ti/SnO2+Sb2O4、Ti/SnO2+Sb2O3+MnO2/PbO2和Ti/SnO2+MnO2+RuO2/MnO2(光电)阳极用于含酚废水深度处理,苯酚降解率可分别达到96.5%、95.8%和91.5%;Ti/SnO2+Sb2O4、Ti/SnO2、Ti/SnO2+Sb2O3+MnO2/PbO2和Ti/PbO2电极上苯酚氧化的电流效率分别为73.5%、66.0%、62.0%和54.9%,用于含酚废水深度处理,消耗的电能依次增大。可见具有固溶体氧化物中间层的Ti/SnO2+Sb2O4电极是深度处理含酚废水较好的电极材料。4.将上述具有多元氧化物固溶体中间层的电极(Ti/SnO2+Sb2O4/PbO2、Ti/SnO2+Sb2O4/MnO2及Ti/SnO2+Sb2O4)和Ti/Sn等阴极应用于偏硼酸钠制备硼氢化钠的原位硼循环体系。首次将NaBO2电解还原(充电)成硼氢化物,硼氢化物在放氢时再(放电)产生副产物偏硼酸钠,从而实现硼的原位循环利用。同时首次建立了镍电极开路电位测定微量硼氢根浓度(10-5-10-3mol/L)方法,测量相对标准偏差为2.22%,回收率为98.43%。最后初步提出了电解偏硼酸钠制备硼氢化钠电化学反应机理的动力学规律。综上所述,多元匹配的氧化物固溶体中间层对钛基氧化物电极的综合性能起了关键作用。中间层的加入使基体和活性层形成良好的匹配固溶体,该固溶体不仅增加了其导电性,而且增强了与基体和活性层之间的结合力,使得上述氧化物电极在酸性溶液中的使用寿命增加,电催化性能得到改善。尤其,二元SnO2+Sb2O4是一种较好的中间层材料。