论文部分内容阅读
SOI (Silicon On Insulator,绝缘体上硅)技术是自上世纪末以来集成电路领域兴起的研究热点,广泛应用于航天、航空、军工、汽车电子等行业,具有明显好于体硅材料的优良特性。热载流子效应(Hot-Carrier Effect, HCE)直接影响半导体器件的稳定性和使用寿命,与半导体制造工艺、制备材料、器件结构、使用环境等均有直接关系,是集成电路尤其是军品可靠性研究重点手段之一。SOI虽然具有其优越性,但由于埋氧化层(BOX)的存在以及为了避免SOI浮体效应经常会采用特殊的体接触结构,使得SOI器件尤其是PD (Partially Depleted,部分耗尽)SOI器件的热载流子效应的研究更加复杂,本文通过对0.18pm PD SOI H形栅NMOSFET进行加速应力试验研究,观察热载流子效应下常用的不同宽长比结构的器件阈值电压、最大跨导、漏端饱和电流三个参数与应力偏置条件、应力时间、器件结构之间的关系,旨在加速0.18μm PD SOI抗辐射器件和电路产品实用化进程,完成的主要工作成果如下:1)完善了SOI器件热载流子试验的系统,补充并规范了试验流程;2)修正了原有的热载流子效应模型,完成大量的加速应力试验,对测试数据进行提取和拟合,得出器件退化参数(器件阈值电压、最大跨导、漏端饱和电流)与应力偏置(VGSstress、VDSstress)、应力时间(t)和沟道长度(L)、宽度(W)之间的关系;3)提出建立H形栅NMOSFET的TCAD器件模型,分析沟道横向电场分布,解释了PD SOI NMOSFET热载流子效应的物理机制;将建立的热载流子模型对标准0.18pm PD SOI工艺SPICE模型进行部分修正,用环振电路对器件模型进行了有效应用验证,并获得初步科研成果。SOI基器件热载流子效应导致的参数退化量与加速试验过程中的t、VGSstress和VDSstress采用了幂函数关系,而与沟道长度L则采用指数关系可更好的对热载流子效应进行解释,沟道宽度W对器件的退化基本没有影响。