论文部分内容阅读
催化裂化(FCC)是我国重油轻质化的重要手段。随着原油的重质化、劣质化,FCC加工的原料越来越差且来源复杂。将组成和裂化性能差异较大的原料通过简单的混合加工,不仅难以进行操作条件的优化,还会引入不同原料间的恶性竞争,导致产物分布恶化。因此,如何实现不同反应性能物料间的优化组合,控制各自适宜的反应条件和反应深度是实现劣质原料高效转化的关键问题。FCC提供了我国燃料油市场约75%的汽油调和组分,但FCC汽油烯烃含量通常高达40–60 vol%,面对日益严格的汽油环保指标,如何高效改质FCC汽油是催化裂化面临的又一技术难题。本论文首先针对劣质原料转化难的问题,以焦化蜡油为研究对象,采用三种方案强化焦化蜡油的催化转化,深入分析了不同操作参数对焦化蜡油转化过程中的热裂化、氢转移等反应,硫氮平衡,硫、氮化合物转化化学,重油四组分转化率,催化剂酸量变化等的影响,并采用电喷雾傅里叶变换离子回旋共振质谱仪(ESI FT-ICR MS)对反应后重油中含氮化合物的组成和结构进行精细表征。研究发现,采用适当高温、大剂油比和短反应时间操作可以改变含氮化合物的反应路径,抑制含氮化合物在催化剂上的吸附生焦,减缓催化剂的失活,促进原料中其它烃类的转化,进而将含氮化合物富集到重油馏分中。通过从焦化蜡油进料位置上方选择性回炼适当比例的轻汽油,可以为焦化蜡油转化和轻汽油改质提供各自适宜的反应条件,实现两个过程的耦合和对含氮化合物的控制转化,在提高原料转化率和目的产品产率的同时高效改质汽油。其次,为了减少汽油回炼改质过程的损失、提高汽油烯烃转化率,本论文在提升管中试装置上考察了轻汽油性质、反应时间和反应器结构对汽油改质过程的影响,并提出了针对汽油改质过程的系统评价方法,对不同反应过程进行量化比较。研究发现,一定量重馏分的存在可以提高轻汽油改质效率;相对短的反应时间有利于高效改质轻汽油;采用带有多喷嘴进料系统的新型变径结构提升管反应器,可显著提高烯烃转化率,减少汽油损失,优化氢分配。采用基于EMMS的多尺度CFD计算方法结合组分传输方程对新型反应器内的气固流动行为进行三维数值模拟发现,汽油采用本文设计的旋流喷嘴进料可以提高油剂混合区的床层催化剂密度,促进注入汽油和反应器内油剂的快速、均匀混合,减轻汽油喷嘴高速射流引发的二次流,降低混合区内油气的返混程度,缩短汽油在反应器内的平均停留时间。最后,在两段提升管催化裂化技术基础上,通过对不同物料进料方式和反应条件的优化,以及反应器的创新设计实现劣质原料的高效转化和汽油的高效改质。针对目前催化裂化掺炼焦化蜡油导致转化率大幅降低、产品选择性变差以及汽油回炼改质损失大等问题提出了焦化蜡油与常规原料分区转化,焦化蜡油高效转化与汽油改质耦合调控的两段协同(TSS)催化裂化新工艺思路。中试评价结果表明,TSS过程可在提高原料转化率和目的产品产率的同时降低汽油烯烃含量13.5个百分点。针对全加工劣质原料时存在转化率下降、多产柴油与提高转化率之间存在矛盾以及常规提升管反应器上汽油烯烃转化率低等问题,通过反应条件和反应器优化进一步完善了两段提升管催化裂化技术。研究结果表明,二段从回炼油进料位置上方选择性回炼适当比例的轻汽油可以强化回炼油的催化转化,并在较小的损失下改质汽油。通过反应器结构和轻汽油进料喷嘴的优化,提高汽油反应区床层催化剂密度,强化油剂接触、反应,不仅可以大幅降低汽油烯烃含量,还可促进重油的转化。由于二段回炼油的转化得到保证,一段可以采用较缓和的反应条件多产柴油。中试评价结果表明,新工艺过程相比常规两段提升管催化裂化过程,可在提高重油转化率,增加柴油和轻质油收率的同时降低汽油烯烃含量17个百分点。