【摘 要】
:
随着信息技术的快速发展,无线通信设备数量呈现爆炸式增长,通信频段不断向更高频迁移。为了缓解网络的功耗压力,扩大无线网络的覆盖范围,可以采用基于无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)中继和智能反射表面(Intelligent Reflecting Surface,IRS)的低功耗协作转发技术。但是,考虑到无
论文部分内容阅读
随着信息技术的快速发展,无线通信设备数量呈现爆炸式增长,通信频段不断向更高频迁移。为了缓解网络的功耗压力,扩大无线网络的覆盖范围,可以采用基于无线携能通信(Simultaneous Wireless Information and Power Transfer,SWIPT)中继和智能反射表面(Intelligent Reflecting Surface,IRS)的低功耗协作转发技术。但是,考虑到无线通信环境的高度开放和计算机运算能力的不断提高,传统的加密手段可能不足以保证无线协作网络的信息安全,用户之间的私密信息存在被窃听的风险。幸运的是,物理层安全技术为上述挑战指明了新的解决方向。针对SWIPT中继网络和IRS协作通信网络中存在的安全问题,论文着眼于基于物理层的协作干扰方案,提出了相应优化算法,最大化了系统保密容量(Secrecy Capacity,SC)。主要研究内容如下:(1)研究了物理层安全的基本概念与SC的定义,描述了SWIPT接收机的典型架构与信号模型,分析了IRS的硬件组成结构与相应信道模型,总结了相关优化方法的基本理论与算法流程。(2)针对SWIPT中继网络的安全问题,提出了一种基于全双工目的节点辅助的干扰策略,以保障网络合法用户的信息安全。考虑到中继需要同时进行信息解调与能量收集,以及系统需要合理分配源节点信息功率与目的节点干扰功率,为最大化系统SC,建立了关于中继功率分流(Power Splitting,PS)比与系统功率分配(Power Allocation,PA)系数的联合优化问题。采用交替优化(Alternating Optimization,AO)算法,将问题分解为分别关于PS和PA比的两个子问题,并求得了它们的闭式解。分析与仿真结果表明,两个闭式解与穷举搜索得到的最优结果高度吻合,所提AO算法可以实现快速收敛,并以远低于穷举搜索法的计算复杂度,达到了与穷举结果基本一致的保密性能。(3)针对IRS协作通信网络的安全问题,提出了一种基于全双工接收机发射人工噪声的干扰策略。为了最大限度地提高系统SC,提出了一种联合设计基站发射天线波束赋形、IRS相位因子和系统PA系数的优化问题。考虑到该问题非凸,引入AO算法将其分解为三个子问题,分别求得了发射波束赋形与系统PA系数的闭式最优解,并采用半正定松弛(Semidefinite Relaxation,SDR)和黎曼流形优化(Riemannian Manifold Optimization,RMO)两种算法得到了IRS的最佳相位因子。仿真表明,基于RMO与SDR的SC性能曲线重合,但前者计算复杂度更低。与采用随机相位和固定PA系数或波束赋形向量的方案相比,理论推导的最优IRS相位、PA系数和波束赋形向量能够实现更大的SC,可显著提升网络安全性能。
其他文献
雷达作为一种穿透力超强的主动式微波探测工具,其性能不受时间、气候和观测距离等因素的影响,在目标检测和预警探测等领域具有其他遥感系统无可比拟的优势。然而,复杂杂波背景下的动目标检测性能受到了各种因素的制约,导致海杂波抑制及和目标检测技术不能满足实时需求。杂波抑制是动目标探测的基础和前提,而现有杂波抑制算法仅仅利用单维域特征并且人工参与的力度大,使得杂波抑制效果的好坏主要取决于算法对雷达参数及环境的适
压缩感知理论打破了奈奎斯特采样定理对采样频率的约束,迅速在各个领域得到了广泛应用。在图像处理领域,通过将压缩感知理论与图像相结合,不仅可以减少数据压缩和采样的代价,而且可以提高图像处理的效率。因此,图像重构是压缩感知研究的一个重点内容。图像重构的目的是从少量的测量值中有效重构出原始图像,但图像重构本身是NP-Hard问题,所以如何利用先验信息对图像进行重构是目前研究的重点。针对不同的先验信息,学者
第五代(5th Generation,5G)移动通信系统的关键指标之一是提升传输速率。毫米波拥有丰富的频谱资源,可以提升带宽。大规模多入多出(Multiple Input Multiple Output,MIMO)部署的天线阵列可以提高频谱利用率。因此,毫米波与大规模MIMO在5G研究中占据非常重要的地位。预编码是MIMO系统的核心技术之一,传统模拟预编码实现简单,但只支持单数据流传输,且性能较差
工程中常采用反幂模型(Inverse power model,IPM)作为交联聚乙烯(Crosslinked polyethylene,XLPE)电缆绝缘的电寿命模型,以描述外施场强E与绝缘失效时间t所呈现的E-t特性关系。IPM中的参数——电压耐受指数n是交、直流电缆绝缘设计及出厂试验考核的重要依据。目前,高压直流电缆的绝缘设计依旧参考交流电缆的设计和运行经验,但由于交、直流电缆中电场分布规律存
随着移动群智感知网络(Mobile Crowdsensing,MCS)的应用领域不断拓展,使用移动群智感知网络采集感知数据的任务发布者越来越多,多任务的分配场景也越来越普遍。本文主要考虑的是参与式感知,以任务发布者为中心,根据感知任务是否对感知时间有特殊要求(例如,任务的最大响应时间),将MCS的任务分配场景分为两类:对时间敏感和对时间不敏感的多任务分配场景。针对这两类场景,本文的主要贡献和创新点
在计算机视觉领域中,运动目标检测作为许多高级视觉任务的基础性工作,被广泛应用于智能安防、智能交通、国防军事等领域。传统运动目标检测算法针对的多是摄像机静止的场景。然而,近年来随着移动计算平台的飞速发展,越来越多的视频数据是在摄像机处于移动状态下拍摄的,如手持摄像机、云台摄像机以及车载摄像机等。在摄像机可以移动的场景下,视频中的背景在时刻发生运动,运动目标不再是导致帧间变化的唯一因素,背景与前景的混
模式识别算法利用大量有标签的样本数据作为训练集对模型进行训练,进而实现对于目标样本的分类。此类算法能够起效的两大重要前提为具有大量有标签数据且这些数据与目标待识别数据具有特征空间上的同分布性。然而在大多真实应用场景中的数据往往是缺少标签的,同时为大量数据标注标签是一件十分费时费力的事。在图像识别问题中,通常人们容易获得的大量有标注的数据与实际需要进行分类的目标数据具有不同程度的分布差异。为了实现利
深度学习目前在许多领域都取得出了很好的成绩,已经广泛地应用于生产生活的各个场景。深度学习的成功离不开计算芯片近年来的飞速发展,因为深度神经网络具有庞大的计算量。但是在边缘端,受限于功耗和算力,部署基于深度学习的应用依然存在巨大的挑战。本研究针对边缘端深度学习应用,提出了两种轻量化神经网络数据压缩编码方法。近来,一些研究者尝试使用信息论来打开神经信号编码的黑匣子。本研究从无线通信的有损数据压缩中受到
设备到设备(Device-to-Device,D2D)通信技术作为第五代(5th Generation,5G)移动通信网络的核心技术之一,由于其巨大的网络容量、良好的资源利用效率和信号传输质量等优势,吸引了国内外广泛关注。但是D2D通信在复用蜂窝网络授权频谱资源的同时,也会带来严重的同信道干扰而损害其它用户服务质量(Quality of Service,QoS)。因此,如何设计合理有效的资源分配方
针对物流仓储系统中的多任务调度问题,现有的多任务组合模型中未考虑能耗因素,而AGV(Automated Guided Vehicle)能耗越大,运行过程中充电的次数越多,会造成系统中断,从而影响系统效率。其次针对物流仓储系统中的AGV冲突问题,目前大多数采用停车等待策略来解决,而该策略会增加系统能耗。本文主要从基于能耗优化的多任务AGV调度和路径规划两方面开展研究,建立了基于能耗的多任务组合模型,