论文部分内容阅读
高等植物的生长发育是基因选择性表达的结果,而基因的表达受到启动子的调控。启动子如同“开关”一样,决定了基因的活动。一旦启动子活性出现异常,通常会导致基因表达的调节障碍,进而可能导致植物生长发育异常。目前的研究尽管获得了许多具备组织特异性或诱导活性的植物启动子,但是真正适于某个特定遗传改良目的的启动子数量并不多或活性不高。因此植物基因组中潜在的启动子还有待分析和鉴定。Tair网站(http://www.arabidopsis.org/)上提供的基因注释信息显示拟南芥At3g21380基因是甘露糖结合凝集素(Mannose-binding lectin superfamily protein,MBL)的编码基因。在本研究中,我们将At3g21380基因暂命名为AtMBL1基因。利用在线网站对该基因的基因表达数据进行分析,发现AtMBL1基因是一个种子特异性表达基因,因此推测AtMBL1启动子是种子特异性表达启动子。首先克隆了AtMBL1启动子,然后将其酶切,连接至植物表达载体上。通过农杆菌介导的浸花法将植物表达载体侵染转化野生型拟南芥。待种子成熟后收获种子,然后将收获的种子撒在含有潮霉素的筛选培养基上进行逐代筛选,最终获得不再发生性状分离的T3代纯合株系。利用GUS组织化学染色法对AtMBL1启动子的组织表达模式进行分析。研究结果证实AtMBL1启动子能够驱动外源基因在种子部位特异性的表达。然后基于AtMBL1启动子的全长序列的分析,设计了一系列5’端缺失启动子的引物,克隆了三个缺失片段。接下来成功构建了三个缺失片段的植物表达载体,并侵染转化野生型拟南芥然后筛选至转基因纯合株系。GUS组织化学染色分析表明,所有缺失片段均能驱动GUS报告基因在转基因拟南芥的种子中表达。本论文的主要实验结果如下:(1)AtMBL1启动子表达载体的构建。根据Tair网站上提供的拟南芥AtMBL1基因上游碱基序列,利用Primer 5.0软件,设计AtMBL1启动子的PCR反应引物,进行PCR扩增。将扩增产物酶切连接到植物表达载体pGFPGUSplus上,转化到大肠杆菌DH5α菌株,利用菌落PCR和酶切鉴定初步验证阳性克隆,最后经过测序结果比对,表明成功构建了AtMBL1启动子的植物表达载体,将其命名为pMBL1-GUS。通过农杆菌介导的浸花法将pMBL1-GUS侵染转化野生型拟南芥。通过多代筛选获得纯合株系。(2)AtMBL1启动子序列分析。使用在线分析软件如PLACE和PlantCARE,对AtMBL1启动子的序列进行分析,鉴定出很多与种子特异性表达相关的调控元件。包括RY元件(CATGCA)、ACGT元件、ACGTCA元件、as-1元件(TGACG)、GCN4元件(TGAGTCA)、skn-1基序(GTCAT)、AACA元件(AACAAAA)等。(3)AtMBL1启动子各缺失序列的克隆载体的构建。基于AtMBL1启动子的序列分析结果,设计5’端系列缺失引物。后经PCR扩增,获得了3个长度依次为621bp、514bp以及351bp的缺失片段,将这三个缺失片段依次命名为△MBL1、△MBL2以及△MBL3。将纯化后的扩增产物克隆到pEASY-Blunt Cloning Kit载体中,且转化至大肠杆菌DH5α菌株中。利用菌落PCR和双酶切的电泳结果,初步筛选阳性克隆,最后进行测序比对。测序结果表明三个缺失片段的克隆载体均构建成功,按照其片段长度从大到小依次命名为MBL1P-1,MBL1P-2以及MBL1P-3。(4)AtMBL1启动子各缺失序列的表达载体的构建。将缺失序列的克隆载体酶切后,电泳回收目的片段,将目的片段连接到pGFPGUSplus载体上。利用菌落PCR和双酶切的电泳结果,初步筛选阳性克隆。最后经过测序比对,结果表明三个缺失片段的植物表达载体均已构建成功。按照缺失片段长度从大到小依次命名为p△MBL1-GUS、p△MBL2-GUS以及p△MBL3-GUS。通过农杆菌介导的浸花法将缺失启动子的植物表达载体转化野生型拟南芥。通过筛选最终获得缺失序列的纯合株系。(5)AtMBL1启动子是种子特异性表达启动子。利用X-Gluc溶液对筛选获得的AtMBL1启动子的转基因纯合株系进行GUS组织化学染色,检测时期包括种子期,幼苗期,花期以及角果期。染色结果表明AtMBL1启动子可以驱动基因表达,而且能够有效地驱动GUS报告基因在拟南芥种子中特异的表达。(6)AtMBL1启动子各缺失序列的GUS组织化学染色。结果显示AtMBL1启动子和缺失系列均可驱动下游GUS报告基因在拟南芥种子中表达,说明它们均具备启动基因转录的活性。△MBL3仍能够驱动下游GUS报告基因的表达,是AtMBL1启动子发挥调控作用的关键区段。推测种子特异性表达元件主要存在于△MBL3中。所缺失的各部分序列不能使启动子失去活性,但这些序列中的元件对基因表达是否起促进或抑制作用、各个元件之间的相互作用关系以及各元件调控启动子活性的分子机制还需要通过启动子定点突变、酵母单杂交以及凝胶阻滞分析等实验来验证。