论文部分内容阅读
在能源短缺和空气污染越来越严重的今天,率先发展低速微型纯电动汽车,正逐步成为人们的共识。电动汽车制动能量回馈对节能减排具有重要意义。本文对纯电动汽车再生制动开展较深入研究,主要工作包括:研究了制动过程中制动踏板角速度、位移随时间的变化规律以及制动踏板角速度随角位移的变化规律,阐明了制动强度与踏板位移的关系。应用由信息理论、混沌时间序列与符号动力学理论为基础发展的符号时间序列方法对制动踏板角速度变化规律进行分析,明确区分了紧急制动与一般制动,而且在制动踏板空行程范围即可作明确区分,具有预见性。该方法去噪作用明显,结论稳定可靠,为研究制动意图提供了一种新方法。设计了具有再生制动功能的直流电机四象限运行直流斩波电路,能够实现再生制动功能。进行了常用双向DC/DC拓扑分析与选型,并对超级电容参数进行了计算。建立了基于制动动力学和制动法规的安全制动范围数学模型,考虑蓄电池SOC与超级电容SOC对制动能量回收的影响,对再生制动的模糊控制和复合电源功率的模糊分配进行了研究,在此基础上设计了最大制动能量回收分配与控制流程。为实现此分配与控制流程,建立了液压制动系统模型,提出一种电制动力最大化实现方法,即把高速开关电磁阀和液压调节器并联,标定高速开关电磁阀占空比与制动轮缸压力的关系,在非紧急制动工况由高速开关电磁阀调节制动轮缸压力。这样,即可由分配策略满足约束条件下的电制动力,确定液压制动力需求,通过制动器模型转换为制动轮缸压力,确定高速开关电磁阀占空比,通过控制高速开关电磁阀占空比,即可实现在非紧急制动工况下液压制动力的按需调节。实验研究方法是本文的主要方法之一。建立了基于制动安全的纯电动汽车再生制动系统试验平台。设计了制动踏板瞬态控制器实现指定角速度输入;提出一种前轴地面制动力在台架上实现的方法,即用调速电机带动磁粉离合器-变速箱给实物车轮提供反转矩方法。