涡轮动叶叶顶间隙泄漏控制及结构优化研究

来源 :大连理工大学 | 被引量 : 5次 | 上传用户:michaelbing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着航空发动机推重比不断增大和大功率燃气轮机结构紧凑化的发展趋势,涡轮动叶叶片载荷不断提高,由此导致叶顶间隙泄漏流动增强,进而使动叶气动损失增大。针对这一问题,本论文采用风洞试验和数值模拟方法,研究不同叶顶结构涡轮叶栅的间隙泄漏流动特征,在此基础上,开展叶顶结构优化,并分析优化叶顶对泄漏流和叶栅性能的影响机理。研究旨在控制叶顶间隙泄漏以提高叶栅与涡轮效率。
  研究内容包括以下四个方面:
  一、翼型冠对涡轮平面叶栅性能的影响研究。针对翼型冠结构,采用数值模拟方法分析全周小翼宽度和部分冠位置对平面叶栅流场结构和气动性能的影响机理,获得部分冠位置的设计准则;在翼型冠叶顶上,增加两个密封齿,叶栅风洞试验和数值模拟结果表明密封齿能进一步提高翼型冠的间隙泄漏控制能力。
  二、带翼型冠涡轮级性能和动叶旋转效应研究。基于LISA1.5级涡轮,采用数值模拟方法分析平顶、整冠、全周小翼和翼型冠对涡轮级气动性能的影响规律,研究表明两种动叶叶顶间隙下,翼型冠都能使涡轮效率提高;然后,基于该涡轮平顶和翼型冠动叶栅,通过数值模拟对比分析叶片旋转和机匣旋转对叶顶间隙泄漏流动和叶栅气动性能影响的异同,发现不同旋转条件下,翼型冠叶栅的气动损失都低于平顶叶栅。
  三、基于源项的数值模拟(SCFD)技术及其在翼型冠喷气孔优化中的应用。为节省数值计算成本,建立带源项模型的流动传热控制方程,通过模拟典型涡轮流动和传热问题,分析均匀网格和湍流模型方程源项对SCFD计算准确性的影响;然后,采用SCFD、基于贴体网格的数值模拟(BCFD)和叶栅风洞试验,研究有叶顶喷气时翼型冠叶栅的气动性能,结果表明不同喷气流量下,SCFD预测的叶栅损失与BCFD和试验结果一致,基于此,通过使用SCFD的数值优化方法,获得使叶栅性能提高的翼型冠叶顶喷气孔布置。
  四、动叶叶顶结构拓扑优化研究。采用SCFD、拟灵敏度和伴随灵敏度分析方法,建立流体拓扑优化体系。以进出口总压损失最小为优化目标,首先对突扩管和U型管流道进行设计,以分析拓扑优化生成损失小性能高流路的潜力;基于二维叶顶间隙泄漏模型,开发叶顶结构的拓扑优化算法,并对三维涡轮叶栅不同轴向位置截面的叶顶结构开展拓扑优化设计,通过风洞试验和数值计算表明优化叶顶能抑制间隙内部的泄漏损失和间隙出口的泄漏流量,从而使叶栅气动性能提高。
  以上研究为翼型冠的工程应用和为流体拓扑优化应用于涡轮动叶叶顶结构设计提供了理论依据和技术支撑。
其他文献
群落构建机制,即群落生物多样性的形成和维持机制,一直都是生态学研究的核心问题。在环境和空间梯度上、在季节时期和研究尺度上探究植物的群落构建模式,结合群落的物种组成和系统发育关系能够更为全面准确地揭示群落构建的机制及其驱动因素。为了探究湿生植物群落的多样性特征和构建机制,本文选取西藏的高原湖滨带和长江中下游河岸带的湿生植物为研究对象,使用相关分析、回归分析、Mantel分析、排序分析等分析方法,分别
学位
现如今,汽车作为人们主要的代步工具之一,已逐渐从高档消费品转变成生活中的必需品。然而随着社会进步、科技发展,人们对安全、绿色、便捷、智能化的出行有了越来越高的要求,国家也是不断颁布、实行日益严格的法规来控制机动车的排放量。OBD作为实时监控汽车发动机和尾气后处理系统运行工作状态的车载诊断系统,早在2005年就被中国强制性地纳入了法规中。为了更大程度地拓展OBD的功能,本文基于OBD-Ⅱ、4G无线通
为了应对日益严格的排放法规,并不断提升汽油机的性能,可变气门正时(VVT)、缸内直喷(Gasoline Direct Injection,GDI)技术以及涡轮增压技术基本成为汽油机发展的趋势。汽油机性能的开发很大程度的受发动机电控单元(ECU)的影响,因此,在实际的开发过程中,需要对其中控制策略和控制算法进行大量的验证和测试。在基于V模式的开发过程中,模型在环(MIL)仿真是TGDI发动机控制策略
压燃式发动机具有热效率高、动力性强等优点,然而其传统的扩散燃烧模式往往会产生大量氮氧化物(NOx)和碳烟(soot)排放。当前,在能源短缺和环境污染的双重压力下,节能、减排成为当前内燃机发展的必然趋势。低温燃烧(LTC)模式的提出极大改善了传统压燃式发动机(或传统柴油机)的性能。但是,其在宽广负荷内稳定运行仍然存在挑战。本文基于两种典型的低温燃烧模式,即预混压燃(PCCI)和反应活性控制压燃(RC