【摘 要】
:
介质阻挡放电在航空航天、材料表面改性、生物医学等领域有巨大应用前景,但目前在大气压空气中产生大面积均匀等离子体仍是难点。研究表明激励器结构参数的优化是提高放电等离子体特性的重要方式,本文基于自主研制的旋转介质阻挡放电激励器,研究了电极转速对放电特性的影响,结合放电图像和电学参数,讨论了旋转状态下放电的过程机制。根据所提出的长曝光时间下多个微放电通道灰度叠加方法,研究了电极转速变化时灰度均值、标准差
论文部分内容阅读
介质阻挡放电在航空航天、材料表面改性、生物医学等领域有巨大应用前景,但目前在大气压空气中产生大面积均匀等离子体仍是难点。研究表明激励器结构参数的优化是提高放电等离子体特性的重要方式,本文基于自主研制的旋转介质阻挡放电激励器,研究了电极转速对放电特性的影响,结合放电图像和电学参数,讨论了旋转状态下放电的过程机制。根据所提出的长曝光时间下多个微放电通道灰度叠加方法,研究了电极转速变化时灰度均值、标准差及灰度强度曲线的偏度和峰度变化过程。结果表明,随电极转速增加,放电灰度强度降低,微放电通道分布均匀性提高。对微放电通道纹理特征分析发现,电极转速增加,放电区域面积增加,微放电通道斑点数量减少,在放电图像上表现出沿电极切向“拉伸”,径向“压缩”的效果。对旋转介质阻挡放电激励器在不同电极转速下的位移电流、传导电流和功率特性研究表明,位移电流的大小与电极转速无关;当电极转速增加,传导电流脉冲簇数量增加,电流有效值增加,且消耗功率也增加。电源与激励器结构的匹配频率为9 k Hz,此时电源功耗最低,电流有效值最小,且脉冲簇的数量也最少。针对放电图像中微放电通道斑点“拉伸”现象和传导电流脉冲簇变化提出三种可能的理论机制:第一,旋转过程中介质层电荷积聚区位置发生变化,使微放电形成通道的方向发生了变化,即微放电通道被拉伸;第二、考虑到旋转过程中电荷积聚区的移动,使得路径上种子电子数量增加,导致放电通道数量增多;第三、电极板气隙间空气形成流动,介质层表面的电荷分布发生变化,微放电通道增多,导致微放电通道分布的均匀性提高。
其他文献
直接AC-AC变换器凭借单级转换、效率高和变换器体积小等特点在需要调压和稳压的场合具有明显的优势而被广泛应用。随着直接AC-AC变换器应用系统中负载种类的增加,对直接AC-AC变换器电路的输入电流谐波、调压范围和输入功率因数的要求也逐渐提高。为了进一步提高直接AC-AC变换器电路的性能以满足不同类型负载的需求,研究直接AC-AC变换器电路并探索通过DC-DC变换器电路的拓扑推衍全新的直接AC-AC
新疆准东煤储量丰富,但由于煤中碱(土)金属含量较高,导致其在循环流化床(CFB)气化过程中出现了床料颗粒团聚和设备沾污等问题,这显著限制了其高效清洁及规模化应用。本文首先利用固定床实验系统研究了准东原煤和水洗准东煤的气化特性及其气化过程的碱(土)金属转化规律,在此基础上利用小型循环流化床实验系统研究了准东煤气化时的床料团聚和飞灰沉积特性,并进一步探索了干燥提质对准东煤理化性质和气化及氧化特性的影响
电力变压器是电网中的关键设备,其可靠运行与电力系统的安全密切相关。作为大型电力变压器的主绝缘材料,油纸绝缘的电气性能关系着设备的安全运行。“白斑”是放电在纸板表面形成的一种特殊的白色损伤痕迹,本质是较大的放电能量或高温导致的气体产生与膨胀,并在纸板孔隙内形成的气体通道。虽然都是放电损伤痕迹,且均会造成绝缘性能的下降,但白斑与常见的黑色碳化痕迹最大区别在于,由于绝缘油的重新浸渍,白斑损伤痕迹具有自恢
油中特征气体在线监测是实现油浸式电力设备状态检修的有效技术方法。H2是反映油浸式电力设备火花、电弧和局部放电故障的重要特征气体之一。气体传感器因拥有响应快,工艺成熟等优点成为气体分析的关键,它对电力设备的健康状态评估与安全运行具有重要意义。SnO2半导体气体传感器因具有制备简单,环境友好等优势在气体检测领域被广泛研究。纯的SnO2在使用时灵敏度低且工作温度较高,极大地限制了其进一步的推广与运用。研
水滴结冰是常见的自然现象,当在低温环境中水滴撞击或悬挂在输电导线上时会产生结冰和粘结,导致输电导线覆冰现象,严重影响生产生活和电网的安全运行,因此有必要针对此现象进行深入研究,明晰其中的结冰机理,从而避免此类现象的发生。本文针对雨滴在电场下撞击过冷壁面的运动过程进行研究,采用Phase Field方法追踪相界面,通过焓-多孔法描述液滴的凝固相变和冰层生长,同时耦合电场方程,将电场力引入到液滴运动中
当电缆长期运行于潮湿的环境中时,绝缘介质内部极易发生水树老化,不仅会严重损害电缆绝缘性能,而且在冲击过电压的作用下,还可能转化为破坏性更强的电树枝,短时间内引起绝缘击穿,造成电网停电事故。因此,研究针对水树缺陷的有效诊断、精确定位和准确评估方法,对保障电缆线路安全稳定运行具有重要意义。针对现有水树缺陷诊断技术存在的不足,如对于长电缆中的局部水树缺陷诊断灵敏度较低,水树缺陷精确定位方法缺乏,评估特征
随着电力系统中融合越来越多的智能化、信息化和自动化设备,电力系统从传统物理电网转变为可实时感知、动态控制和信息决策相融合的电力信息物理系统。然而,该系统的构建对电网的脆弱性产生了新的影响。攻击者在信息交互过程中通过虚假数据注入攻击(False Data Injection Attacks,FDIAs)等手段破坏电力系统的网络信息安全,使控制中心误以为系统仍在正常运行中,误导控制中心做出错误决策,导
直流系统具有转换效率高、供电容量大、电能质量高等优势,已成为未来电力领域重要的发展方向,直流型分布式电源及负载的接入比例也在逐年增高。然而,直流系统中存在大量恒功率负载,其负阻抗特性是造成电压振荡、系统失稳的重要原因。目前,对恒功率负载造成电压振荡及稳定性问题的研究主要针对单极性直流系统;双极性系统由于存在不平衡工作状态以及极间耦合,其稳定性问题与单极性系统存在较大差异,需进行更深入的研究。因此,
伴随着第五代移动通信(5G)技术逐渐成熟并走向商用,开展后5G时代(Beyond 5G,B5G)/第六代移动通信(6G)技术研究已成为国内外科研院所和ICT企业关注的焦点。通过对5G技术现存问题深入分析,以及B5G/6G应用需求的深入挖掘,不难发现B5G/6G迫切需要新技术手段以期在不显著增加网络部署成本的同时提升无线通信频谱和能量效率,从而满足未来应用需求并实现真正意义上的可持续网络演化。与此同
随着全球能源需求的快速增长和对可持续发展的迫切要求,能源结构转型进程日趋加快,可再生能源发电持续大力发展。然而分布式可再生能源和负荷具有的高度不确定性为孤岛微电网运行的安全性和经济性带来严峻挑战。传统优化运行研究方法对微电网进行控制和决策时往往忽略了可再生能源出力及负荷功率的预测误差,难以有效处理孤岛微电网中的高度不确定性。为此,本文以高比例可再生能源渗入的孤岛微电网为研究对象,对多阶段不确定性建