论文部分内容阅读
有压管道系统是引水系统的重要组成部分,水力发电过程中高压管道内常常伴随着水击现象,而且此现象不可避免。为减小水击对水电站有压管道系统的影响,通常在有压管道系统中布置调压室以破坏有压管道系统的封闭性。而如何高效的运行调压井与管道系统,一直是水击研究的热点。本研究对有压管道系统非恒定流进行三维数值模拟,为类似工程拓展了一种新方法,促进了水利学科的发展。本文以刘家峡有压管道为依托工程,釆用SOLIDWORKS建立三维计算模型,GAMBIT对计算模型划分结构化网格,运用FLUENT计算流体力学软件进行计算。最后运用TECPLOT软件对计算结果进行后处理。该模型主要包括排发电支洞、调压井和电站高压管道;计算过程中运用动网格技术实现阀门的动态启闭。由于该模型(调压井内水流)涉及空气和水流两种介质不断交换问题,模型拟采用成熟的VOF技术处理该技术难题。采用已有的刘家峡有压管道非恒定流模型试验成果,对有压管道系统三维非恒定流数值模型进行验证。结果表明,两者吻合较好。初步认为本研究是可以成为研究三维有压管道系统的有效途径。两台机组同时丢荷下数模结果表明:流场方面:发电支洞与调压井连接处出现顺时针漩涡,高压管道靠近阀门的地方有顺时针旋涡。高压管道在弯管处流速流态变化较大。一个水击波传播周期内,有压管道系统内流速呈现出先减小再增大再减小再增大的规律。最大流速发生在调压井内。压力方面:一个水击波传播周期内,发电支洞与调压井、高压管道内压力呈现出先增大后减小再减小再增大的规律。最大压力发生在高压管道靠近阀门处的区域。紊动能方面:一个水击波传播周期内,有压管道系统紊动能和紊动耗散率均呈现处逐渐减小的规律。并且逐渐向调压井的下方移动。调压井与靠近阀门出的弯管区域紊动最大。两台机组增荷下数模结果表明:流场方面:发电支洞与调压井连接处出现顺时针漩涡,高压管道靠近阀门的地方有顺时针旋涡。一个水击波传播周期内,有压管道系统内流速呈现出先增大再减小再增大再减小的规律。最大流速发生在调压井内。压力方面:一个水击波传播周期内,发电支洞与调压井、高压管道内压力呈现出先减小后增大再增大再减小的规律,其中高压管道在1/4周期内产生了负压。最大压力发生在高压管道靠近阀门处的区域。紊动能方面:一个水击波传播周期内,有压管道系统紊动能和紊动耗散率均呈现处逐渐减小的规律。并且逐渐向调压井的下方移动。调压井与靠近阀门出的弯管区域紊动最大。