论文部分内容阅读
电离层是无线电波传播的主要介质,也是航天器运行最主要的区域。电离层扰动对无线电波的传播会产生极其严重的影响,尤其对无线电通讯、广播、导航卫星等以电离层为基础的各种平台。同时,电离层也是近地大气与外层空间连接的纽带,是整个日地空间中承上启下的重要部分和关键环节。因此,电离层的探测和研究具有重要的科学意义和应用价值。国际超级双极光雷达网(Super Dual Auroral Radar Network,SuperDARN)是由部署在两极及中高纬地区30多部相干高频雷达组成的电离层地基监测网,用于获取极区及中高纬地区的电离层对流图。电离层对流图的准确性与目标定位精度息息相关。有效降低系统误差,提高雷达的目标定位精度是电离层对流图准确性的重要保障。然而,传统SuperDARN雷达因技术受限,通道间不一致性难以消除,方位向和俯仰向的测角精度难以有效提高。中国科学院国家空间科学中心在“国家高新技术研究与发展计划(863计划)”的支持下,自主研发了一部敏捷型电离层高频雷达(Agile Daul Auroral Radar Network,AgileDARN),该雷达采用了全数字相控阵技术,具备分布式数字信号处理能力,可对各个通道进行独立控制与处理,具有更优的性能和灵活性。基于分布式数字信号处理系统及定标电路设计,AgileDARN雷达通过系统定标(包含内定标和外定标)、多波束合成及多基线仰角测量等技术,使雷达的目标定位精度得到显著提高,从而保障探测区域的电离层对流图准确性。本文基于AgileDARN雷达,开展了大阵列尺度雷达系统定标方法研究、数字波束合成技术研究和多基线仰角干涉测量算法研究。具体研究内容如下:(1)AgileDARN雷达定标方法研究内容的主要包含:(a)不一致性误差分析。该部分根据AgileDARN雷达系统特点,建立不一致误差传递模型,并分析了其对阵列方向图的影响;(b)内定标方法设计与实现。本中介绍了雷达系统内定标实现方法,并利用实测数据验证内定标方法的有效性。(c)外定标方法研究。介绍了外定标原理和实现方法,并利用实测流星尾迹回波作为定标源来实现外定标,结合内定标,消除整个发射/接收链路间的不一致性误差影响。通过内定标和外定标处理后,雷达系统各通道间的幅度不一致性误差在0.5d B以内,相位不一致性误差在±3°以内,有效地降低了系统误差,验证了该方法的有效性。(2)AgileDARN雷达数字多波束合成技术研究。该部分首先介绍了多波束合成的原理,改进、实现方法和测试结果。其中AgileDARN雷达在波束合成技术上的改进包括:(a)在接收链路采用数字多波束技术,使得流星回波和小尺度电离层回波的方位向定位精度从3.25°提升到0.46°。同时介绍了基于数字多波束合成的比幅和差波束测角法,测角精度约能达到波束半功率宽度的2%;(b)切比雪夫窗的使用使得天线方向图的副瓣抑制达到-30d B。最后通过流星回波和小尺度的电离回波验证了数字多波束合成的性能。(3)AgileDARN雷达多基线干涉仰角测量算法的研究。本部分首先介绍了SuperDARN雷达最常用的两种仰角测量方法:单子阵干涉测量和双子阵干涉测量,并分析了目前仰角测量中的两个突出问题。针对仰角测量中的问题,本文提出了一种新的天线阵布局和多基线干涉测量仰角的方法,通过仿真对新增天线的可选位置和增益要求给出了参考,同时对可能影响仰角测量精度的因素进行了分析,最后用实测的流星回波数据验证了仰角测量算法的可行性。