亚高山林线生态交错带的植被生态学研究

来源 :中国科学院自然资源综合考察委员会 中国科学院地理科学与资源研究所 | 被引量 : 0次 | 上传用户:s5871212
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
亚高山林线是一个显著的生态交错带,是监测和研究全球气候变化的最佳地段,在全球变化研究中具有重要的理论价值。植被生态学途径是揭示生态交错带生态过程及其与气候变化关系的基础,本研究以四川卧龙巴郎山岷江冷杉林线和长白山岳桦林线为研究对象,采用交错带生态梯度样带调查和重点地段典型抽样、定性和定量相结合的方法进行野外数据采集,同时收集研究区前人的研究成果和面上资料进行综合分析。在研究手段上,采用种群统计和植被生态学数量方法进行定量化研究。在重点解剖研究区和对比分析的基础之上,总结出亚高山林线交错带的生态学特征和分布格局。主要研究结果如下:中国亚高山林线植物区系十分丰富,云冷杉、落叶松、桦木、高山栎、圆柏、柏木都是亚高山林线树木的重要组成成分。青藏高原隆升和环境变迁是山地暗针叶林树种分化和特化的动力,高原的东南部是世界林线树种物种多样性最高的地区。亚高山林线植物区系主要由北温带和世界广布成分组成,林线植物区系具有典型的温带性质。青藏高原亚高山林线的三维地带性分布符合数学模式:H=exp( a + bx +cy + dxy + ex2 + fy2),在热量指标中,7月均温是亚高山林线分布的主导限制因子。青藏高原亚高山林线的水热条件属于Thornthwaite气候系统的寒冻潮湿型。植被数量方法是生态交错带定量判定的重要手段,游动分割窗技术和植被变异侧面图是交错带数量判定的两种有效方法。游动分割窗距离系数分布图的波峰和峰宽对生态交错带的位置和宽度有很好的指示性,植被变异侧面图还能指示林线环境的异质性。林线交错带是群落结构发生急剧变化的地段。林分的密度、高度和胸径都出现显著降低,群落层片结构趋于简单,草本植物组成趋于复杂,是相邻群落相互混杂和渗透的结果。林线交错带树木是增长种群,这是维持林线稳定和增长的基础。树木生长对林线交错带恶劣生境反应敏感,亚高山林线是山地垂直带上树木生长出现急剧降低的过渡带,也是生长型发生迅速变化的地段,在繁殖适应方面表现出多种适应途径。林缘具有明显的边缘效应,表现为较高的群落生态多样性。林线交错带是物种多样性较丰富的区间;同时,林线环境异质性较高,物种替代迅速,也出现β多样性的高峰。林缘形状对交错带物种多样性有较大的影响,凸型和直线型林缘的α多样性低于凹型林缘,但β多样性较高。凸型和直线型林缘物种更替较快,而凹型林缘物种替代较慢。林隙干扰是岷江冷杉林线交错带树木定居和森林更新的动力,林线交错带树木的死亡和定居对过去气候变化较为敏感,分别与过去气候变化的冷谷和暖期相对应。岷江冷杉林线是较为稳定的。长白山林线交错带的林缘形状对岳桦更新格局和向苔原入侵有重要影响。在凹型林缘外更有利于岳桦幼树向苔原的入侵和定居,林缘形状对木本植物入侵苔原具有强有力的控制作用。林缘形状引起的“凹凸逆转”的生态效应可能是岳桦林线缓慢上升的一种机制。最后,基于青藏高原近几十年来气候变化的趋势,探讨了未来气候变化情景下青藏高原亚高山林线分布高度的变化。青藏高原林线在未来气候情景下变动的幅度为150~600m,林线上升的幅度自西向东逐渐降低。
其他文献
本文采用样方法,设置了51个样方,其中包括10×10m乔木林样方17个,2×2 m灌草样方34个.对小浪底库区退化山地植被类型进行了物种多样性统计分析,对库区退化山地生态环境进行了
随着新型电力电子器件的应用以及微型处理器的快速发展,交流变频调速技术得到了前所未有的发展,直接转矩控制技术以其简单的控制方法,优良的静、动态性能被广泛应用到各类电机控