论文部分内容阅读
海岸带是海洋与陆地的结合部、复杂与交叉的地理单元,是人文活动非常活跃与资源环境非常优越的黄金地带。考虑资源环境和现实要素,我国海岸带调查内容多,包括海岸线及其变迁演变、海滨湿地、土地利用与土地覆盖、植被等,其中最重要的调查要素是海岸线和土地利用。目前,基于遥感影像数据进行海岸线提取和海岸带特征分类的算法有很多,取得了一定成果,但它们多数使用单一的遥感数据,难以得到较高精度的海岸线和地物分类。LiDAR点云与影像各具优缺点,二者的互补性很强。因此,利用机载LiDAR提供的精确的三维点云数据并结合数字影像,进行相关的海岸线提取与地物分类的数据处理技术成为海岛海岸带调查的一个新的研究热点。本文的研究内容围绕着海岸线提取和海岸带地物分类这两个主要论题展开,对其中涉及的诸多关键技术予以深入探讨,包括以下内容:(1)总结现有点云组织索引算法的优缺点,提出一种基于Hilbert排列码与R树的海量LiDAR点云二级索引算法。通过聚类方法与R树的M值来优化第一级索引;使用Hilbert R树作为第二索引,实现两级R树高度的有效控制,同时使点云的增加与更新只在局部进行,达到高效管理海量点云的目标。为验证算法效率,实验时利用较大点云数据分别建立了完整的KD树、四叉树内存索引和本文所述索引。在这三索引中分别进行KNN查询、窗口查询和基于坡度变化的滤波处理三项实验,结果表明,本文所述的二级索引在查询效率及整体性能上是最优的。(2)总结LiDAR数据特征,包括:高程差、梯度、法向量、强度、回波次数、平坦度等,在此基础上研究并实现一种多特征滤波算法。该方法是在基于梯度的LiDAR数据滤波算法的基础上改良而成的,即在梯度滤波的结果上,再进行平坦度滤波作为补充判断条件,从而提高滤波精度。试验结果表明该方法滤波有效,算法稳健,分类精度>80%,能满足的常规应用的分类精度。此外试验中所采用的分类阈值均为系统默认,通过调节阈值,理论上可达到更高的分类精度。(3)通过对典型实验区域的反复研究,提出一种联合LiDAR点云和影像的海岸线提取方法,并对以下关键技术进行重点研究:1)结合影像分割与归一化差异水体指数的水体提取方法;2)初始水边线的提取和顾及多种点云特征精化水边线提取方法;3)海岸线平滑方法。本文实验证明了该方法的有效性。(4)本文基于随机森林,提出一种面向对象的机载LiDAR数据特征选择与分类方法,对海岸带目标对象的几何、光谱、纹理等特征进行相关性评估,筛选出合适的特征用于海岸带地物分类。通过逆向迭代消除,定量选择出与所分目标最相关的特征。以RF和SVM分类器实验证明:特征选择后,RF分类精度与SVM精度相当,通过特征选择去除了部分特征后的分类精度略优于利用所有特征的分类精度。为了改善复杂建筑物区域环境下,建筑物与其它地物之间存在的严重混分现象,本文以模糊集为理论基础,研究并实现了一种融合影像和LiDAR点云的类别隶属度分类方法。实验结果表明在LiDAR点云的辅助下,能够有效改善光谱信息分类结果中出现的建筑物、裸地、道路、水体等地类之间的混分现象,能够为复杂建筑物区域提供更为精准的分类结果。