【摘 要】
:
随着现代科学技术的迅猛发展,振动检测在现代工程领域中愈发占有举足轻重的地位。现有的振动测量方法包括机械法、电测法和光测法等,其中机械法测量灵敏度低,频率范围小;电测法易受电磁干扰,在一些特定场合限制了上述两种方法的应用;光测法以光参量反应振动信号,可以弥补这些缺陷,应用非常广泛。光纤光栅传感器作为光测法中应用较为广泛的传感器,具有灵敏度高、对电磁干扰不敏感、易复用等优点,可以对温度、应变、振动和波
论文部分内容阅读
随着现代科学技术的迅猛发展,振动检测在现代工程领域中愈发占有举足轻重的地位。现有的振动测量方法包括机械法、电测法和光测法等,其中机械法测量灵敏度低,频率范围小;电测法易受电磁干扰,在一些特定场合限制了上述两种方法的应用;光测法以光参量反应振动信号,可以弥补这些缺陷,应用非常广泛。光纤光栅传感器作为光测法中应用较为广泛的传感器,具有灵敏度高、对电磁干扰不敏感、易复用等优点,可以对温度、应变、振动和波动等多种物理量进行测量,在传感领域具有重要地位。本课题将光纤激光技术与光栅振动传感技术相结合,对提出的基于光纤激光器的光纤光栅差分振动传感方法进行了深入研究。本文首先介绍了课题的研究背景及意义,综述了光纤激光器和基于光纤激光器的光纤光栅振动传感的研究现状,在此基础上,对掺铒光纤激光器和光纤光栅传感原理进行了理论分析。其次,本文设计了一种基于光纤激光器的光纤光栅差分振动传感系统,该系统采用光纤激光器作为光源,可提高光功率的利用率;采用双匹配光纤光栅结构对传感系统进行差分解调,将检测灵敏度提高一倍,理论上可自适应减小温度影响。同时利用OptiSystem软件对系统的掺铒光纤长度、耦合器分光比进行了优化,改善了传感系统的性能。本文还利用OptiSystem软件对单匹配光栅振动传感系统和双匹配光栅差分振动传感系统的特性进行了分析对比,仿真结果表明,双匹配光栅差分振动传感系统的灵敏度高于单匹配光栅振动传感系统的灵敏度。最后,根据光纤光栅振动传感系统设计方案,搭建了光栅悬臂梁振动传感实验系统,分析了匹配光栅波长和带宽对系统输出的影响,实现了对振动信号的传感检测;搭建了声波振动传感实验系统,分析了不同声波频率时传感系统的输出特性,实现了对声波信号的传感检测。
其他文献
复合绝缘子凭借其易安装、耐污性能好和生产周期快等优点,近几年在输电线路领域上得到广泛关注。然而伴随着工业快速发展带来的环境问题愈演愈烈,复合绝缘子污闪的事故也经常被报道。超大伞裙结构一方面可以增大复合绝缘子的爬电距离,另一方面可以改善其表面的积污状况,进而提高电力系统的安全稳定性能。因此,超大伞裙结构对复合绝缘子积污特性的影响研究是很有必要的。本文简述了复合绝缘子的风洞积污试验,利用COMSOL软
电力负荷作为现代电力系统的重要组成部分,在系统的整体设计分析、调度运行控制中都起着关键作用。电力部门作出的各类精准决策均依托于以各类电气元件数学模型为基础的数字仿真计算,故其模型精确程度将会直接影响到电力系统的仿真计算结果和以之为基础而产生的决策方案准确性。因此,与电力负荷特性建模和模型参数辨识相关的课题研究受到了国内外电力行业专家学者的广泛关注。本文基于变电站实测负荷数据,开展了实际配电网的综合
本文构建了Nafion-聚溴甲酚绿-石墨烯纳米复合膜修饰玻碳电极(Nafion/PBG/GO/GCE)。研究表明,该复合膜修饰电极对NO的电化学氧化具有明显的催化作用。同时,该复合膜具有较大的比表面和较快的电子转移速率,从而建立了一种NO的高灵敏、快响应电化学传感方法。结果显示,NO在Nafion/PBG/GO/GCE上的氧化峰电流与其浓度在1.0×10-7~2.25×10-4mol/L范围内呈良
通风空调系统及空调机是建筑室内必不可少的一部分,若空调运行维护不当,污染微生物会在适宜温湿度下大量繁殖并随送风进入室内,影响室内空气品质。因此,针对空调微生物污染问题,本文主要进行以下研究:本研究通过可控气流参数空调管道模型实验台,研究通风管道材料(酚醛复合板、玻镁复合板、彩钢玻纤复合板、镀锌铁皮)、气流参数(温度、相对湿度)、实验时间等条件对管道内积尘伴生微生物生长的影响,发现四种管道材料上生长
目前我国的电力行业主要还是以火力发电为主,煤炭燃烧以后产生的硫化物和氮氧化物随着烟气流入烟道,在通过脱硫脱硝以后,还会有一部分随着烟气继续流动,这部分硫化物主要是通过除雾器来进行除去,除雾器在整个烟气清洁过程中有着不可或缺的地位,这对除雾器的要求就越来越高,本文通过实验和模拟相结合的方法对不同结构的除雾器性能进行研究。实验部分,通过搭建试验台对除雾器在冷态条件下除雾效率和压降进行分析。具体研究了组
虚拟电厂通过分布式能源管理系统和先进的通信手段将配电网中分散安装的新能源、可控负荷和储能系统等合并管理,并作为一个特别的电厂参与电网运行,从而较好地解决源网荷之间的功率不平衡问题,以充分挖掘分布式能源优势为电网和用户带来价值和效益。随着我国“30·60”碳达峰碳中和战略目标的实施,以及加快推进构建以新能源为主体的新型电力系统,虚拟电厂中将集聚越来越多的光伏、风电等新能源,而新能源出力的固有不确定性
接地装置是发电厂、变电站、输电铁塔等各类电力系统中必不可少的基础性设施之一,一方面为各类电力设备提供一个公用的参照地,即能够满足系统正常运行的工作所需,另一方面又是对短路故障或雷击等安全防护的要求。一般接地装置包括接地引线和接地网,通常采用钢材构成。由于接地网导体埋入地下,容易发生腐蚀变细,甚至断裂,接地体埋深等变化,导致接地参数变化,引起接地性能下降。因此,提高接地网导体缺陷的检测效率和精度,及
化石燃料的迅速枯竭以及长期以来大规模消耗所引发的全球变暖问题,使得建立高比例可再生能源发电系统,成为未来解决能源与环境双重危机的重要途径。然而,可再生能源发电往往受到自身特性及发电技术的限制,其短期出力呈现随机性、间歇性等特点,致使电力系统调频率稳定性问题的复杂度也随之增加。当风电与光热电站(Concentrating solar power,CSP)构成风电-CSP联合发电系统时,可以通过控制光
空气中的生物粒子在手术过程中进入伤口会导致手术部位感染(Surgical Site Infections)。手术部位感染大大增加了病人的医疗费用、发病率和死亡率。因此,手术室空气传播生物粒子的控制尤为重要。然而手术过程是一个动态过程,动态条件下的气流组织和生物粒子扩散行为将变得复杂而未知。本文主要采用数值模拟方法并结合动网格技术对手术室动态行为特征下的气流扰动和生物粒子扩散规律进行研究,同时比较了
流速测量是水文监测领域中的重要环节,影响着生产生活以及军事国防等诸多方面。随着对流速测量精度的需求日益提高,声学多普勒流速剖面仪(Acoustic Doppler Current Profiler,简称ADCP)应运而生,其优势在于可同时测量不同深度水域的流速,提高测量精度。随着全球各个国家对水文事业的愈发重视,我国也在逐步发展和完善声学多普勒流速剖面仪的相关技术,但较国际先进水平仍存在差距,如稳