【摘 要】
:
有效地对网络中海量的文本信息加以利用,方便人们的生活,一直是自然语言处理领域重要的研究内容。作为文本信息结构化的第一步,实体识别的结果直接影响下游任务的效果,这也使其不断迎来各种挑战。其中,细粒度的实体识别旨在不同上下文语境中对实体进行更准确、更丰富的描述,这一点在实体类别数量和类别层次上提出了更高的要求,逐渐成为目前实体识别领域中的研究热点。同时由于人工标注的代价高昂,现有的数据集大多基于远程监
论文部分内容阅读
有效地对网络中海量的文本信息加以利用,方便人们的生活,一直是自然语言处理领域重要的研究内容。作为文本信息结构化的第一步,实体识别的结果直接影响下游任务的效果,这也使其不断迎来各种挑战。其中,细粒度的实体识别旨在不同上下文语境中对实体进行更准确、更丰富的描述,这一点在实体类别数量和类别层次上提出了更高的要求,逐渐成为目前实体识别领域中的研究热点。同时由于人工标注的代价高昂,现有的数据集大多基于远程监督方法标注而来,其中大量的噪声也对细粒度实体分类提出了更高的挑战。此外由于中文固有的语言特点,也增加了中文实体识别的难度。本文对细粒度中文实体识别与分类的研究,由两个子任务构成,即中文实体边界识别和细粒度实体分类,主要进行三个方面的研究:(1)融合单词特征的中文实体边界识别。本文将边界识别视为一个序列标注任务。首先使用BERT预训练语言模型生成的上下文相关字向量,针对Soft Lexicon网络,采用注意力机制做出改进,提出了Attention Soft Lexicon网络,用其进行单词特征的提取,并送入LSTM和CRF中进行中文实体边界的识别。(2)基于两阶段训练的细粒度实体分类。首先同样使用BERT模型对文本进行编码,然后分别使用Bi LSTM和CNN从不同角度提取文本的上下文信息,并使用二次交互注意力网络进行实体与上下文信息的交互,并通过计算标签向量相似度进行多标签分类。针对数据集中存在的标签噪声和标签向量难以收敛的问题,本文采用多级合页损失函数,依次面向粗细粒度标签的方式对模型进行两阶段训练,并取得了较好的效果。(3)基于上下文语义的实体标签向量增强方法。本文分别使用语言模型和掩码语言模型构建标签增强模块,并在当前语料对语言模型进行预训练,学习数据集中文本的上下文语义信息。然后通过与细粒度实体分类模型联合训练的方式,使用大量的实体上下文信息去纠正标签噪声的影响,实现对实体标签向量的加强。
其他文献
意图识别任务旨在确定一句话的意图,即通过分类模型将问题分类到事先定义的问答系统中各种可能的意图类别当中,可以被认定为分类任务,是自然语言理解中的关键技术。意图识别任务较早就被提出,但由于缺乏标注数据无法在现实场景中得以应用,尤其是特定领域的意图识别任务当中数据匮乏更为严重。而深度学习在文本分类等多个自然语言处理任务中获得了很好的表现,但是这种方法需要大量的标注数据。本文围绕意图识别的研究现状和当前
在计算机视觉领域,图像分类任务的待分类样本通常来自不同的基础类别(如车、狗、鸟、树等),然而在很多实际应用场景下需要对这些基础类别做进一步分类,这种分类的粒度相较于一般分类任务更为细致,所以称其为细粒度图像分类。因为细粒度图像分类任务区分的是同一基础类别下的子类,子类之间的差异性比与基础类别之间的差异性小很多,且往往体现在细小的局部,这成为细粒度分类任务的难点所在,同时图像噪声、拍摄角度和光照等因
跨语言词嵌入指不同语种的单词对应的表示处于相同的向量空间之中,从而可以方便地度量不同语种的词之间的相似程度,无监督跨语言词表示学习旨在不借助任何的外界跨语言信息来进行跨语言词表示的学习。现有的无监督跨语言词表示学习虽然取得了一定的成果,但仍然存在着不足之处。缺点之一便是自学习步骤中的双语翻译词典获取方法较为简单,不能为后续迭代步骤提供高置信度的双语关联信息,影响了自学习过程的学习效果,并对最终获得
肺癌是最常见的癌症之一,它的发病率和死亡率增长很快。针对不同肺癌亚型,其治疗方案区别很大,如鳞癌以放疗为主;而腺癌则以化疗为主。当前,肺癌分型主要依靠人工诊断,导致效率低,精度差。本文使用病人的CT和PET图像作为数据集,利用深度学习方法训练模型完成对肺癌类型的自动划分。论文中使用Res Net50作为特征提取网络,分别实现只使用CT图像或PET图像以及共同使用CT和PET图像作为输入进行分类,观
在人们对太空领域进行探索与利用的同时,空间技术迎来了长远的发展,出现了新的空间技术需求,例如空间站的维修、卫星回收、释放以及维护等。此外,在经历了近一个世纪频繁的太空活动之后,空间中充斥着很多太空垃圾,它们对未来的航空航天存在很大的威胁。另外,航天器所使用的宇航级CPU工作环境恶劣,面临宇宙辐射以及超过300摄氏度的温差的挑战,故宇航级CPU发展缓慢,现今国内外使用的宇航级CPU计算能力普遍低下,
舆情是社会民意的集中反映。网络舆情来源广泛,传播速度快,且海量多样。为了帮助政府机构、社会媒体能够在海量舆情文本中更有效率的掌握舆情发展动向,需要根据蕴含的信息对舆情文本进行准确的划分。相较于有监督方法,无监督的聚类算法不需要大量标注的数据,能在低人力成本的条件下得到相对理想的性能,是舆情划分的有效方法。近些年,融合表示学习和聚类目标的深度聚类算法得到了广泛关注并取得了出色的性能。现有的深度聚类算
随着大数据的流行,越来越多的分布式计算框架(比如Hadoop、Spark等)被应用到实际的大数据应用中。为了解决大数据平台下的数据管理核心问题,将传统数据管理系统中的核心查询操作扩展到大数据平台是非常有必要的。现有Spark内置的查询操作是针对Spark SQL的内置数据类型设计且实现的算法并不全面;另一方面,针对Spark平台面向数据管理核心查询操作的综合评测工作并不多且难以满足特定环境下的评测
导弹作为现代战争中的重要远程打击手段以及战略威胁武器的载体之一,是我国国防力量构成中的重要组成部分。导弹装填是导弹生产制造过程中的重要环节,其任务是将导弹装配到弹筒中。如何精确地将弹筒与导弹轨道架对接是一个关键问题。目前国内的导弹装填工作主要还是通过手工方式对简单的工装机构进行调整,由人推动架车进行最终的对接。这对工人的技术水平有着极高的要求,特别对于大型导弹的装填,时间消耗很长。随着计算机视觉技
日常生活中的信息多以文档的形式呈现,挖掘文档中实体对之间的关系更具有实际意义。但是现有的关系抽取方法大多是句子级别的,难以捕捉文本中相隔较远的实体对之间的关系,为了弥补这一点,文档级关系抽取技术应运而生。本文拟从以下三个方面对文档级关系抽取技术展开研究:(1)基于序列的文档级关系抽取方法研究。基于序列的文档级关系抽取方法可以看作是句子级关系抽取方法的延伸,本文在该部分探究了两种具体模型,分别是利用