基于过渡金属(羟基)氧化物纳米异质阵列的电解水催化剂

来源 :天津理工大学 | 被引量 : 0次 | 上传用户:ljn3125678
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氢能是一种绿色环保、能量密度高的二次能源,氢能的发展应用可以有效解决因化石能源过度使用带来的种种问题。电解水是一种能够有效获取氢能的制氢工艺,然而电解水反应过程中因极化反应的存在极大降低了电解水制氢的效率,因此电解水制氢的发展需要高效电催化剂来降低反应过程中的过电位。贵金属催化剂Ru O2和Pt虽然能够明显降低过电位,但是由于贵金属材料的价格高、储量少等因素限制了贵金属催化剂材料的大规模使用。因此开发高效、价格低廉的非贵金属基电解水催化剂材料成为发展电解水制氢的关键。本文以过渡金属(羟基)氧化物为催化活性中心,通过调控材料的活性位点和电子结构,合理构筑得到Fe OOH@Co Al-LDH(Layered double hydroxides,LDHs)和Cu3P@Co O异质结阵列作为析氧反应(oxygen evolution reaction,OER)和析氢反应(hydrogen evolution reaction,HER)的催化剂。在本文第三章,通过水热法成功制备CoAl-LDH纳米片,并采用一步浸渍法成功将平均尺寸为2.3 nm的Fe OOH纳米点均匀分散在水滑石纳米片表面。经过一系列表征发现,FeOOH@CoAl-LDH材料中FeOOH与CoAl-LDH之间存在强烈的电子相互作用,说明成功制备具有异质结结构的Fe OOH@Co Al-LDH。在1 M KOH溶液中对样品进行电化学性能测试,Fe OOH@Co Al-LDH催化剂在50 m A cm-2的电流密度下产生的过电位仅为272 m V,且塔菲尔斜率低至40 m V dec-1,说明Fe OOH@Co Al-LDH材料具有较好的反应动力学。且Fe OOH@Co Al-LDH在经过10、20和50 m A cm-2电流密度下共30 h稳定性测试后依然保持出色的电化学活性,说明Fe OOH@Co Al-LDH可以作为高效、稳定的OER催化剂。基于密度泛函理论(density functional theory,DFT)的计算结果表明,Fe OOH与Co Al-LDH的耦合优化了材料对OER反应中间产物的吸附自由能,有效降低了水氧化过程中的能垒。在本文第四章中,通过阳极氧化法以及热磷化法在泡沫铜表面原位生长Cu3P纳米线,以Co O作为催化活性物质负载至Cu3P纳米线表面,成功制备具有核-壳结构的Cu3P@CoO纳米异质阵列。在1 M KOH溶液中测试Cu3P@Co O的HER催化性能,在10 m A cm-2的电流密度下产生的过电位仅为93 m V,对应的塔菲尔斜率低至71 m V dec-1,在经过长时间稳定性测试后仍具有较好的HER催化活性,说明Cu3P@Co O可以作为高效、稳定的HER催化剂。DFT理论计算表明,Cu3P@Co O异质结具有更适宜的反应中间体吸附自由能,从而表现出更高的HER催化本征活性。FeOOH@CoAl-LDH和Cu3P@CoO的成功合成说明,可以通过构建异质结纳米阵列来调控过渡金属(羟基)氧化物的电子结构和反应位点,进而设计出具有高活性的电解水催化剂。
其他文献
近几年来锂离子电池(LIBs)在便携式电子器件等领域取得了广泛的应用,但是随着科技的快速发展,对LIBs在循环稳定性和能量密度等方面提出了更高的要求。目前商业化的负极材料理论比容量较低,远不能满足高比能电池的需求,亟需开发具有更高比容量与循环稳定性的负极材料。Si负极由于其较高的理论比容量(4200 m A h g-1)和较低的工作电压(0.4 V)而被认为是最有潜力的高比能电池负极材料。然而,在
学位
本文实验研究了变热源进口温度工况和变热水进口温度工况下膨胀阀开度对R32热泵系统稳定性和系统性能的影响规律。结果表明:不同工况下系统存在不同的过热度振荡区间,且热源进口温度对起始振荡过热度的影响较显著,而热水进口温度对其影响则不明显;变热源进口温度(15~25℃)工况下,制热量随着过热度的变化呈现不同的变化规律,而其COP则呈现相同的变化规律,且系统均在过热度振荡区间内获得最大COP;变热水进口温
期刊
在我国北方寒区,冬春季节低温极易导致仔畜消化道疾病高发,由此引发的腹泻、消化不良、发育迟缓甚至死亡已严重危害了畜牧业经济的健康发展。虽然现代集约化养殖模式已经趋于成熟,但运输、停电、半开放养殖等不可抗力因素诱发的冷应激仍是畜牧业面临的严峻挑战之一。肠道作为与外界环境接触面积最大的器官,更容易受到环境低温的影响。肠道健康与肠道屏障的完整性息息相关,在肠道各段结构中,结肠菌群最为丰富,一旦屏障受损,就
学位
随着化石资源的不断消耗和人们对环境气候问题的日益重视,寻找能够转化为高附加值化工产品或高品质燃料的可再生资源得到科学家们的青睐。糠醛作为可工业化生产的生物质基平台化合物,进一步的开发利用有助于推动低碳经济和“双碳”目标的实现。因此,开展糠醛与脂肪醇的选择性氧化-缩合反应研究具有重要的科学意义和应用前景。本论文中,主要研究了金属铜基催化剂对糠醛与直链醇的氧化-缩合反应的促进效应。首先,以氯化亚铜和氢
学位
本文通过建立免疫抑制大鼠模型,探究金雀异黄素(genistein,GEN)缓解免疫抑制大鼠运动疲劳的效果,探讨GEN对大鼠骨骼肌中AMPK/PGC-1α/PPARγ/SIRT1通路及相关因子的影响。选择96只雄性Sprague Dawley(SD)大鼠,体质量(200±20)g,按体重随机分为6组,每组16只,分别为空白对照组(CG)、免疫抑制模型组(MG)、金雀异黄素低剂量(GEN-LG)、中剂
学位
电催化CO2还原反应(CO2RR)可在常温、常压条件下,将CO2转化为高附加值化学品。但由于CO2高的热力学稳定性,导致反应的过电势高、催化活性低、产物复杂等问题。其中,将CO2还原成CO成本最低,最具应用前景。目前,贵金属(如金(Au))和单原子催化剂(SACs)在电催化CO2还原反应中对产物CO表现出高的选择性。但贵金属催化剂用量大,成本高;单原子催化剂结构单一,对于多分子参与和多电子转移的C
学位
金属硫属化物具有特殊的物理化学性质和多样的结构特征,能广泛应用于光电催化、快离子导电、发光及非线性光学等领域。其中,金属硫属化物作为离子交换材料用于放射性等有害金属离子的去除表现优异,逐渐受到人们的关注。金属硫属化物中的硫属原子(S或Se)具有软碱性,对相对较软的离子(如Cs+、Sr2+、Ba2+离子)有较好的亲和力。另一方面,该材料表现出灵活的配位模式,良好的框架柔韧性、能构造出尺寸不同、形态各
学位
儿童戏剧作为一种特殊的文化载体、思想资源,是培塑少年儿童健康心智的重要工具。“十七年”期间我国引进了马尔夏克《十二个月》、米哈尔科夫《红领巾》等一批优秀苏联儿童戏剧,不仅是俄罗斯儿童文学和儿童戏剧的重要组成部分,而且对中国当代儿童戏剧的影响深远,极具研究价值。本文重点梳理了中俄两国儿童戏剧发展史学研究以及相关理论研究,详细介绍了观察库和参照库的建设方案、研究工具以及分析方法,并基于自建语料库,结合
学位
Navβ1亚基是电压门控钠离子通道的辅助亚基之一,调控通道的门控特性,以及通道的激活和失活。而Navβ1亚基对KCNQ通道的调控作用尚不清晰。文章利用全细胞膜片钳技术检测了Navβ1亚基对异源表达的KCNQ通道及其亚型的电流调控特征。实验结果发现,Navβ1亚基可以差异性调控KCNQ通道的电流特性,抑制KCNQ1和KCNQ2通道的活性,而激活KCNQ3和KCNQ4通道,延缓KCNQ1通道的激活,易
期刊
当前,全球经济的高速发展和人口的持续增加,人们对能源的需求不断增多,由此引发的能源消耗以及环境污染问题越发严重。开发清洁和可再生能源转换技术,对解决当前的能源和环境危机有重要意义。利用太阳能或太阳能转化的电能催化能源小分子活化转化,已成为当前研究领域的热点课题。本文利用地球储量丰富的过渡金属钴,合成了钴基分子和聚合催化剂,并对其光催化CO2还原和电催化水氧化性能进行了研究。具体研究内容主要分为以下
学位