论文部分内容阅读
优化速度模型是车辆跟驰理论中的一个重要模型,通过描述微观车辆的驾驶特性,来解释宏观车流的现象,它在数学上有较好的可拓展性,能解释交通拥堵的动态过程,被广泛运用。在现实的车流中,不同的驾驶员面对不同的路况和车况,采取的驾驶行为不尽相同,而传统的优化速度模型是确定性的,无法描述车辆的随机行为。为了体现车流的随机性,本文对优化速度模型施加参性激励的高斯白噪声,建立了随机优化速度模型。本文运用随机动力学的稳定性理论来分析随机优化速度模型。首先,对随机优化速度模型进行降维处理,用矩稳定性理论得到了稳定性条件。随后,文中用样本渐近稳定性理论,计算了不同车辆数和不同噪声激励强度分别对应的稳定边界,验证了矩稳定性理论的有效性。并对随机优化速度模型进行蒙特卡罗模拟,计算了车流首次进入拥堵状态的时间分布。研究发现,对优化速度模型施加噪声激励会减小模型的稳定域,当噪声的激励强度过大时,车流将始终处于拥堵的状态。模型中的驾驶员敏感性系数若取值过大,反而会使得交通流出现时走时停的现象。施加参性激励的白噪声会缩短交通流陷入拥堵的时间。最后,本文把速度差作为反馈控制项,施加在随机优化速度模型中,建立了速度差反馈控制模型,用矩稳定性理论求出了稳定边界,并经由蒙特卡罗模拟绘制出了时程图。该速度差反馈控制可以有效减缓交通流的拥堵,这对于提升道路的车流量有着现实意义。