论文部分内容阅读
本文通过建立完全强不可约理想的刻画,考察完全强不可约理想与素理想的关系,以及完全强不可约理想与完全不可约理想的关系,得出:R是一个环且J(R)=0,则每个完全不可约理想是完全强不可约的当且仅当R是既是正则的,又是半完全的。这一关系导致产生了一种新的环类----完全算术环。与此同时,在正则环的基础上,进一步考察了这种环的结构。理想的可消性是交换代数学研究的一个十分活跃的课题。对于正则算术环,我们建立了可消理想的一系列刻画,为进一步研究相应环类中理想的可消性提供了一定的基础。作为这一结果的应用,我们可以更清晰地了解完全算术环中理想的可消性,并给出完全算术环中可消理想的等价条件:R是一个完全算术环且J(R)=0。那么N是一个可消理想当且仅当对于任意e∈Idem(R),存在f∈Idem(N)使得Re=Rf。