【摘 要】
:
随着全球气候变暖和环境污染日益严重,节能减排已成为全世界关注的问题。锂电池因其具有良好的电化学性能,已大规模应用于光伏储能电站、新能源汽车等场景。在不同的应用场景下,所使用的荷电状态(SOC,State of Charge)区间及充放电倍率不一致,而使用合适的区间及充放电倍率可有效减缓锂电池的老化,因此明确锂电池工作的SOC区间及充放电倍率对其老化的影响程度是目前需解决的关键问题之一。本文针对不同
论文部分内容阅读
随着全球气候变暖和环境污染日益严重,节能减排已成为全世界关注的问题。锂电池因其具有良好的电化学性能,已大规模应用于光伏储能电站、新能源汽车等场景。在不同的应用场景下,所使用的荷电状态(SOC,State of Charge)区间及充放电倍率不一致,而使用合适的区间及充放电倍率可有效减缓锂电池的老化,因此明确锂电池工作的SOC区间及充放电倍率对其老化的影响程度是目前需解决的关键问题之一。本文针对不同SOC区间及充放电倍率下锂电池老化特性进行了研究,具体内容如下:本文以功率型钴酸锂电池作为研究对象,将不同SOC区间,充电倍率,放电倍率进行组合完成共24组双应力老化实验。实验的流程分别包括预处理、SOC调整、老化循环、标准容量测试,并计算电池容量衰退率。通过分析实验结果,得出以下结论:(1)同等放电深度(DOD,Depth of Discharge)下,SOC区间越高老化越快;(2)充放电倍率在低SOC区间对电池老化速度影响较小,在中高SOC区间,充放电倍率越大老化速度越快;(3)相同等效循环次数下,DOD越大老化速度越快;(4)长时间大倍率放电导致的电池升温,会加快锂电池的老化。同时根据以上结论,提出了延缓锂电池老化的使用建议。基于等效容量释放原则,选择放电倍率、SOC区间中值、DOD作为老化模型的应力因子建立幂律方程对实验数据拟合。根据拟合结果,对幂律方程进行优化,通过拟合参数与老化应力之间的关系建立基于幂律方程的老化模型,模型的拟合优度R~2为98.01%,均方根误差RMSE为0.16%。为优化不同老化阶段的预测效果,使用高斯过程回归对不同应力下锂电池老化进行预测。比较不同核函数模型误差,选择最优组合核函数。并通过增加历史信息输入及特征值耦合的方式优化模型,建立基于改进高斯过程回归的锂电池老化模型,预测曲线拟合优度R~2为99.33%,RMSE为0.08%,更符合锂电池在不同老化阶段的老化趋势。
其他文献
相比于传统基于插值、重构及硬件设备等方法进行CT图像超分辨率重建,基于深度学习的方法能够获取纹理连续性好,感兴趣区域特征突出的重建图像,且算法的成本更低。因此本文以深度学习的图像超分辨率重建算法为基础,主要针对注意力机制,残差特征提取及图像的上、下采样技术进行分析和研究。具体内容如下:(1)提出了基于UNet特征融合的超分辨率CT图像重建(UNet SR)。首先,关于通道注意力(Channel a
肺部疾病的患病人数逐年增多,改善肺部疾病的早期诊断和治疗,从CT图像中自动进行肺部分割是临床决策的一项关键任务。然而,由于肺的形状、大小不规则、对比度低和边界模糊,分割肺实质区域是一项非常具有挑战性的任务。现有方法中基于低级手工特征的方法易导致欠分割,基于CNN的浅层网络无法提取更具辨别力的特征。随着深度学习在图像处理领域取得了重要突破,将深度学习与计算机辅助诊断结合识别肺部图像成为了一个热门的研
室内外空气污染已经成为现代社会普遍关注的问题。尽管在过去的几十年中,世界范围内颁布了许多关于空气质量的政策和法规,但空气污染仍然在对人类健康产生负面影响。挥发性有机化合物(Volatile Organic Compounds)是大气污染之一,它的治理问题引起了研究者的关注。二氧化钛(TiO2)半导体光催化材料具备高效无毒、稳定性好、经济环保等优势,因此使用TiO2作为光催化剂降解污染物是解决大气污
图像语义分割是一项关键视觉技术,其目的是为图像中所有像素分配对应的语义标签。经过多年发展,图像语义分割已取得了不少成果,但由于分割任务的复杂性、以及深度学习的局限性等原因,仍有许多问题待解决。例如,无法很好保存边缘细节特征;在提取语义上下文和充分利用特征信息方面效果不佳,导致特征表达能力不足;网络参数量过大。因此,针对以上问题,本文对基于卷积神经网络的图像语义分割进行深入研究,并从解决皮肤镜图像病
核事故发生时,由于核环境内部辐射剂量过大,人类无法进入现场进行后续操作,核应急作业机器人作为少数能进入核事故现场的机器,在解决事故时起到重要作用。部分核应急作业机器人上带有图像采集模块,采集到的图像数据是机器人对内部环境感知的重要依据。然而,核环境中的高能粒子会同图像采集模块中的半导体材料发生辐射效应,导致采集到的图像中含有大量核噪声亮斑。本论文针对灰度核噪声和彩色核噪声分别提出了对应的降噪算法,
作为非语音音频分类任务中最重要的研究领域之一,声音事件识别被广泛应用于音频监控、音频场景分析、生物声学监测、医疗诊断等领域。声音是信息传播的主要途径,通过分析声音中携带的信息指导人类的生活和生产,提高生活生产效率。传统的特征提取器在设计的时候需要研究者具有大量的先验知识以及进行复杂的计算;传统的人工设计的网络模型对声音进行建模,其精度难以达到令人满意的结果。本文将使用深度学习的方法解决声音事件识别
现代社会中,人们对安全隐私更为看重,对独居老人的看护系统也愈加智能化与人性化,深度学习算法的融入也使得其市场应用前景更为广阔。看护系统中人体异常行为识别算法也同时成为了大量国内外学者的热门研究内容。为了提升老人看护系统的精确性且同时能够保障用户的隐私安全,本文提出了一种基于红外光场景的家庭看护的异常行为智能识别方案,此方案由人体目标提取处理、训练行为识别网络以及异常行为判别等环节组成。在人体目标提
由于生物特征识别技术在保持便携性的同时,比传统的个人身份验证方式有更高的安全性,所以得到了广泛的关注。其中,依靠手指静脉图像进行身份识别的技术因在现有的生物特征识别技术中拥有更高的安全性而快速发展起来。人工设计算子表达手指静脉图像中纹理信息的方法由于处理步骤繁琐并且鲁棒性和泛化性较弱,逐渐被特征提取能力更强的卷积神经网络方法替代,但是与此同时,这也提高了对运行设备算力的要求。因此,需要研究卷积神经
人体异常行为监测对公共区域安全及城市安防建设意义重大。传统监控方式主要通过人工复检,易出现误检、漏检等问题。同时固定监控摄像头监测范围有限,灵活性不足。针对上述问题,面向航拍场景结合对环境变化鲁棒性较好的人体姿态信息,本文研究了基于图卷积的航拍人体异常行为识别。(1)针对嵌入式平台存储与运算性能有限的问题,设计了一种轻量化人体姿态估计网络。基于高分辨率表征学习网络(High-Resolution
推进剂是火箭发射的重要组成部分,研究推进剂燃烧过程中的气体成分、温度和充分燃烧条件具有重要的指导意义,也是推进剂高效有序燃烧的基础。在燃烧场诊断技术中,温度是研究燃烧机理的重要参数之一。定性或定量研究推进剂燃烧过程中的二维温度场分布,对深入了解火焰燃烧形态、火焰燃烧成分检测和燃面制备等具有重要意义。本文将利用双色平面激光诱导荧光测温技术测量酒精灯和推进剂的燃烧火焰二维温度。设计双色平面激光诱导荧光