论文部分内容阅读
在查阅国内外大量相关文献资料的基础上,结合我国农田灌溉和施肥特点,采用室内试验和理论分析相结合,以试验为主的技术路线,主要研究了施肥条件下波涌灌间歇入渗土壤水、氮运移和水肥耦合特性及其对地下水硝态氮浓度的影响,为提高水肥利用率、减缓地下水的NO-3-N污染提供理论依据,研究具有重要的理论价值和生产实际意义。主要研究成果为:
(1)研究了不同地下水位条件下均质土壤上升毛管水运动特性。随着土壤初始含水率的增大,毛管水上升速度增大;毛管水上升高度随时间的延长而增加,但毛管水上升速度随时间的延长而减小;初始含水率越大,达到相同高度所用的时间越短;建立了均质土壤毛管水上升高度与上渗时间之间的幂函数关系;土壤初始含水率越小,土壤水分达到平衡时所需的地下水补给量越大,且达到稳定所需的时间越长;揭示了地下水补给量与上渗时间之间的幂函数关系,毛管水上升高度与地下水补给量之间呈明显的线性函数关系。
(2)研究了肥液连续入渗和波涌灌间歇入渗能力、湿润锋运移、土壤含水率分布、土壤NO-3-N运移特性及地下水NO-3-N浓度的分布特性。与连续入渗相比,肥液间歇入渗可以降低土壤的入渗能力,并且减渗效果主要体现在入渗的第二周期;肥液间歇入渗湿润锋运移较连续入渗速度慢,并随着周期数的增加而减小;提出了由连续入渗湿润锋运移资料计算间歇入渗湿润锋运移距离的模型;肥液间歇入渗土壤含水率较连续入渗的分布均匀;间歇入渗较连续入渗土壤NO-3-N锋面运移速度慢,更有利于将NO-3-N保持在浅层土壤中;在有地下水影响的条件下,连续入渗和间歇入渗在不同时间土壤NO-3-N浓度与土壤含水率关系均近似于“倒L"型曲线,由高含水率段和过度段组成。与连续入渗相比,间歇入渗土壤NO-3-N浓度与土壤含水率关系曲线更陡;连续入渗时,进入地下水中的硝态氮较多。
(3)研究了波涌灌溉间歇入渗技术要素对肥液间歇入渗能力、湿润锋运移和土壤含水率分布、土壤NO-3-N运移及其对地下水NO-3-N分布的影响,分别建立了不同影响因素的肥液间歇入渗量和湿润锋运移模型。循环率为1/3时,间歇入渗减渗作用最大,有利于将NO-3-N保持在浅层土壤中,进入地下水中的硝态氮最少,对地下水的污染最小;周期数为3时,间歇入渗减渗率最大,土壤硝态氮浓度锋迁移距离最小,间歇入渗进入地下水中的硝态氮最少;灌水定额越大,湿润锋运移深度越大,土壤硝态氮迁移的距离越大,随入渗水分进入地下水中的硝态氮越多。不同影响因素的肥液间歇入渗地下水中硝态氮浓度增加量与地下水深度之间呈幂数函数关系。
(4)研究了不同浓度肥液间歇入渗情况下水肥耦合特性及地下水中NO-3-N运移特性。入渗能力随肥液浓度的增大而增大;肥液浓度越大,间歇入渗NO-3-N浓度锋运移距离越大,土壤剖面NO-3-N浓度峰值越大;不同浓度肥液在间歇入渗结束时,土壤硝态氮浓度和土壤含水率的关系曲线近似一个横放的"V"字型,在地表以下0~72cm范围内,土壤硝态氮浓度和土壤含水率均比较大,且从上到下硝态氮浓度随含水率的减小而减小,肥液浓度越大,土壤含水率对土壤硝态氮浓度的影响越大,在72cm~150cm范围内,土壤硝态氮浓度接近初始状态,几乎不受土壤含水率的影响;随再分布时间的延长,不同浓度肥液间歇入渗土壤含水率和NO-3-N浓度关系曲线更光滑,分布越均匀,在地表以下0~76cm范围内,土壤NO-3-N浓度随土壤含水率的增加而减小,在地表以下76cm~150cm范围内,土壤硝态氮浓度较入渗结束时有所增加,肥液浓度越大,土壤含水率对土壤硝态氮浓度的影响越大;随水分入渗进入地下水的NO-3-N主要集中分布在浅层地下水中,肥液浓度越大,进入地下水的NO-3-N越多,对地下水的污染越严重,对于不同浓度肥液的间歇入渗,在入渗结束时进入地下水中的硝态氮最多,随再分布时间的延长,进入地下水中的硝态氮逐步减少。不同浓度肥液对应的地下水中NO-3-N浓度增量与地下水深度呈指数函数降低关系。
(5)研究了施肥方式对间歇入渗土壤水分、氮素运移特性及地下水NO-3-N的影响。对于不同施肥方式的间歇入渗,表施肥的土壤入渗能力较灌施和深施的大;在相同入渗时间,湿润深度大小顺序为表施>深施>灌施>不施肥;建立了不同施肥方式的土壤间歇入渗量模型;再分布1天后,相同湿润深度处,土壤含水率大小顺序分别为表施>灌施>深施;施肥方式对间歇入渗NO-3-N运移和分布影响很大,相对而言,灌施间歇入渗土壤湿润范围内NO-3-N分布相对较均匀,而表施与深施在某一深度土层内NO-3-N分布较集中,而且随时间不断向深层土壤迁移;表施情况下土壤中的NO-3-N随水分迁移的速度最快,相对表施与深施而言,灌施间歇入渗NO-3-N更有利于保持在浅层土壤中,能够有效地降低水分和NO-3-N深层渗漏损失;不同施肥方式的间歇入渗地下水硝态氮浓度随地下水深度的增加而增加,地下水硝态氮浓度随入渗时间的延长而增大;地下水硝态氮浓度的增加比率(不同入渗时间内地下水硝态氮浓度增量的绝对值占总入渗时间内地下水硝态氮浓度增加总量的百分比)随入渗时间的延长而减小,入渗结束时地下水硝态氮浓度的增加比率最大,再分布5天的增加比率最小;建立了不同施肥方式条件下地下水中硝态氮浓度的增量与地下水深度之间的指数函数模型;灌施的地下水硝态氮增量较表施和深施的小,灌施肥有利于提高氮肥利用效率,减轻氮肥对地下水的污染。