论文部分内容阅读
旱作农业生产在保障全球粮食安全中扮演着不可或缺的角色。然而,降水的稀缺和较大的时空变异性严重威胁旱作农业生产的可持续性。农田覆盖技术,特别是塑料薄膜覆盖已被广泛用于旱地作物生产,但不同旱作区的光温水热资源差异较大,农田覆盖技术的增产效果也将受到地域间气候因素的影响。因此,依据区域特点进行适当的农田覆盖管理措施有利于提高资源利用率和农田生产力,促进旱作地区农业的可持续发展。本研究连续多年在中国黄土高原半干旱区(宁夏彭阳)和半湿润区(陕西杨凌)设置不同覆盖处理:(1)垄膜沟播种植(R)、(2)平作塑料薄膜全覆盖(P)、(3)平作降解膜全覆盖(B)、(4)平作秸秆全覆盖(S)和(5)传统平作种植(CK),研究了不同农田覆盖模式对土壤水分(SM)、土壤温度(ST)、土壤碳氮养分、土壤微生物群落结构和作物生产力的影响,取得的主要研究结果如下:(1)不同农田覆盖模式对土壤水温状况的影响不同覆盖模式显著影响了玉米农田土壤温度,随着生育进程的推进各覆盖处理间的差异逐渐减小。在半干旱区,三个覆膜处理均表现出明显的增温效果,大小表现为P>B>R。在半湿润区,P和R处理整个生育期0-25 cm平均土壤温度较CK平均提高3.1?C和0.6?C。两个试验区的S处理在整个生育期均具有明显的降温效应,并在半干旱区对土壤的降温效果更为明显。不同覆盖模式在休闲期均具有一定的保墒效果,但受不同区域和降水年型的影响,两个试验区均以P覆盖的休闲期储水效果最好。此外,两个试验区的覆膜处理均能有效提高生育前期的土壤含水量,随着生育期的推进,由于生物量和作物蒸腾作用的增加,覆膜处理促进了生育中期作物对深层土壤水分的利用,而在生育后期表层土壤含水量又有所回升,生育期农田耗水量呈现“前低—中高—后低”的规律。S处理在整个生育期较CK一直保持较高的土壤含水量。此外,在半干旱区以P处理下的农田耗水量(ET)最高,其平均ET分别比R、B、S和CK高44.5 mm、44.1 mm、65.5 mm和59.9 mm,在半湿润区各处理的ET大小顺序为P>S>R>CK。(2)连续覆盖对土壤碳氮养分的影响连续覆盖对不同覆盖模式下的土壤全氮和土壤有机碳含量的影响不同。与试验前相比,两个试验区表层(0-20 cm)土壤全氮均呈逐渐下降趋势,且均以塑料薄膜覆盖(R和P)和降解膜覆盖(B)处理表层土壤全氮含量下降速率最大,其次S处理和CK。然而,半干旱区R、P和S覆盖下的表层土壤有机碳含量较试验前略有上升,B和CK处理的土壤有机碳则分别降低了0.03和0.04 g kg-1,但均与试验前差异不显著。在半湿润区,除S处理外,其他处理两个土层(0-20 cm和20-40 cm)土壤有机碳均有所下降。土壤可溶性碳氮(DOC和DON)在表层(0-20 cm)土壤中的含量最高,随着土层加深而逐渐降低。两个试验区表层土壤的DOC含量均以S处理最高,覆膜处理则较CK降低了表层土壤的可溶性碳氮含量。各处理间的可溶性碳氮含量在20-40 cm和40-60 cm土层基本无明显差异。硝态氮在0-100 cm土壤剖面中的垂直分布情况受不同降雨年份的影响,玉米生育后期降雨少,各处理硝态氮剖面峰值及差异集中在上层土壤(0-40 cm);玉米生育后期降雨较多会导致收获期硝态氮的淋溶,使深层(60-100 cm)土壤硝态氮的含量较高。两个试验区的覆膜(R、P和B)处理促进了作物对氮素的吸收,降低了土壤硝态氮在深层土壤的积累,S处理的硝态氮分布与CK间无明显差异。各处理土壤铵态氮的含量较硝态氮低,分布规律与硝态氮类似。(3)连续覆盖对土壤微生物群落结构的影响连续覆盖导致两个试验区的土壤理化性质发生了改变,并进一步导致土壤微生物群落结构的变化,与其他覆盖处理相比,半干旱区的P处理和半湿润区的R处理均同时提高了土壤真菌和细菌的多样性和丰富度。土壤理化性质的改变与土壤微生物群落结构的变化密切相关,其可以解释半干旱区(彭阳)80%以上的土壤微生物群落结构的改变和半湿润区(杨凌)超过90%的土壤微生物群落的变异;其中在半干旱区细菌群落变化主要受SM的影响,真菌群落变化主要取决于土壤养分(硝态氮NO3-N、土壤全氮TN)和ST;而SM和ST是影响半湿润区不同覆盖模式下的土壤微生物群落结构变化最主要的因素。(4)不同覆盖模式对玉米生长发育的影响覆膜(R、P和B)处理明显缩短了玉米的生育期,显著提高了玉米的株高、茎粗和叶面积指数,进而显著提高了生物量及穗干重占总干物质量的比重,在半干旱区表现为P>R>B,而在半湿润区的R和P处理收获期生物量较CK平均提高了19.2%和20.7%。S处理在两个区域均延缓了玉米的生育进程,但其对玉米生长发育的影响在不同降雨年份表现不同,在平水年,其株高、茎粗、叶面积指数和干物质积累量较CK均有所降低,而在干旱年则有不同程度的提高。不同覆盖模式对干物质转运与分配的影响在不同试验区域表现不同。在半旱区,与对照相比,各覆膜(R、P和B)处理显著提高了吐丝后干物质积累量对籽粒的贡献率(2017年除外),S处理下干物质转运与分配的变化受降雨年份的影响。在半湿润区,不同试验年份R和P处理吐丝后同化物输入籽粒量分别较CK平均提高了20.9%和21.1%,S处理仅在2016年显著提高了吐丝后同化物输入籽粒量,但各覆盖处理对吐丝后同化物转运量对籽粒的贡献率没有显著影响。(5)不同覆盖模式对玉米产量、水分利用效率(WUE)和经济效益的影响三个覆膜处理通过增加穗粒数和百粒重,显著提高了玉米的籽粒产量,在半干旱区,R、P和B处理较CK平均增产2971 kg ha-1、6831 kg ha-1和1600 kg ha-1,其中R和P处理的净收益也有不同程度的提高,而B处理由于覆盖材料成本过高,净收益有所降低;此外,半干旱区以P处理下的WUE最高,其次是R、B、S和CK处理。在半湿润区,R和P处理的增产幅度为5.7%~24.8%和8.5%~20.4%,经济效益较CK平均增加1156元ha-1和857元ha-1;而R处理的WUE分别较P、S和CK处理平均提高7.4%、18.0%和15.2%。S处理的产量和WUE受降雨年型的显著影响,平水年由于百粒重的降低而使玉米籽粒产量下降,并降低了WUE,干旱年的产量和WUE则有不同程度的提高,而其在半干旱区和半湿润区的经济效益较CK分别降低了524元ha-1和977元ha-1。总体而言,P覆盖下的玉米籽粒产量和经济效益在半干旱区的表现明显优于半湿润区,而半湿润区以R覆盖获得WUE和经济效益最大,S处理对半干旱区玉米产量和WUE的影响较大。不同区域农田覆盖条件下玉米生产力的变化与土壤理化性质和土壤微生物的变化密切相关。在半干旱区,播前土壤储水量(SWSS)、ST、蒸散量(ET)、TN和土壤有机碳(SOC)与籽粒产量、WUE和经济效益均显著相关;半湿润区的产量、WUE和经济效益主要受ET和TN的影响,表明协调土壤水温与土壤养分有助于改善半干旱区的作物产量,但在半湿润区SWSS和ST却不是限制作物产量提高的主要因素。此外,土壤细菌多样性与两个区域的作物籽粒产量显著正相关,而真菌群落主要影响WUE。综上所述,农田覆盖模式对土壤主要性状和玉米生产力的影响受不同旱作区气候条件的显著影响,在不同区域依据主要限制因子筛选适宜的覆盖模式,是维持旱地农田生产力的有效途径之一。塑料薄膜全覆盖(P)在半干旱区可以持续提高玉米产量,而其在半湿润区对作物产量的提高程度较小,因此更适合冷凉的半干旱区。降解膜全覆盖(B)在半干旱区的增产效果不可持续,且弱于塑料薄膜全覆盖。垄膜沟播种植(R)在半湿润区能够持续提高玉米生产力和经济效益,而其在半干旱区增加了玉米产量的年际变化。虽然秸秆覆盖(S)的增产效果不如塑料薄膜覆盖处理,但其在干旱年的表现优于不覆盖处理。考虑到秸秆的土壤培肥效应和塑料薄膜全覆盖对土壤养分的消耗,薄膜覆盖与秸秆的结合可以在提高作物生产力的同时平衡地力。