【摘 要】
:
果蝇的Translin-Trax八聚体蛋白被命名为C3PO(Component 3 Promoter of RISC)是由于其在Ago2相关的pre-RISC向成熟的RISC转化过程中起到了促进作用。siRNAs在Dcr2与R2D2的协同作用下,被带进Ago2中,并与Dcr2,R2D2以及Ago2形成了成熟的RISC前体。这个RISC前体要变成一个成熟的RISC需要将Ago2上结合的双链siRNA
论文部分内容阅读
果蝇的Translin-Trax八聚体蛋白被命名为C3PO(Component 3 Promoter of RISC)是由于其在Ago2相关的pre-RISC向成熟的RISC转化过程中起到了促进作用。siRNAs在Dcr2与R2D2的协同作用下,被带进Ago2中,并与Dcr2,R2D2以及Ago2形成了成熟的RISC前体。这个RISC前体要变成一个成熟的RISC需要将Ago2上结合的双链siRNAs变成单链siRNA。这个过程牵涉到Guide strand的选择,Passenger strand的切割以及切割产物从RISC中的移除及自身降解。Translin-Trax八聚体能够帮助Passenger strand顺利降解。它本身就是一个镁离子依赖的核酸内切酶,序列长度在7nt以上的核酸单链都能被它切割。在移除并降解了单链的siRNA之后,这个八聚体蛋白有了新的名字——C3PO。C3PO有助于Ago2-RISC的成熟,这意味着RISC发挥作用将更有效率。基于C3PO的这一特点,我们开始了对C3PO在果蝇中小RNA通路的功能研究。在果蝇的exo-siRNAs通路中,RISC的核心蛋白是Ago2。我们用dsEGFP-pAc5.1/V5-His B-EGFP这个EGFP报告系统来反映果蝇中C3PO被敲减之后的exo-siRNAs通路的RNA干扰效果的强弱。结果表明,敲减Translin或者Trax任意一个都会减弱C3PO的活性,进而降低该通路的RNA干扰,使本应被沉默的EGFP表达水平得到了恢复。我们进一步研究敲减C3PO对果蝇endo-siRNAs通路的影响。在这个实验中,我们在敲减Translin这个保证C3PO稳定性的蛋白之后,发现pMT-EGFP-esi-2.1受到内源性小RNA的基因沉默效果减弱了。我们对野生型果蝇与Translin突变果蝇进行小RNA高通量测序,发现在突变果蝇中,esi-2.1的passenger链含量上升了,并且guide链含量也随之上升了。这个现象说明缺少了C3PO的帮助,Ago2-RISC的活性降低,内源性的小RNA干扰效果减弱。研究了C3PO在两个以Ago2作为RISC核心的小RNA通路中的功能之后,我们继续观察它的缺失对miRNAs通路活性的影响。首先我们分析突变果蝇与野生型果蝇的小RNA高通量测序数据,发现Translin突变果蝇的miRNAs含量高于野生型。继而通过pMT-EGFP-bantam-bulged这个报告质粒,我们发现在C3PO敲减的细胞中,miR-bantam含量增加,其对目的基因的翻译抑制效果也增加。我们得出结论,C3PO在miRNAs通路中发挥作用不再依赖Ago蛋白,而是负责降解细胞质中游离的miRNAs。这样C3PO即防止星链的堆积,又加快了从靶基因上脱落下来的成熟链的降解,保证果蝇自身基因调控的正常进行。
其他文献
本文我们主要发展了交替方向乘子法来迭代求解Hilbert空间中带凸罚项的一般线性反问题并在一定的停机准则下证明了交替方向乘子法是一种迭代正则化方法.根据问题的结构我们分两种情况进行了讨论,分别利用交替方向乘子法和带预条件的交替方向乘子法来求解相应问题.我们用各种数值实验验证了这两种方法的正确性和高效性.在第一章我们回顾了反问题的基本概念、正则化理论和正则化算法.在第二章我们回顾了本文所需的基础知识
近年来,对复杂网络的研究渗透到众多不同的学科领域,比如数理科学,工程科学和生命科学,并取得了许多重要的成果。在实际复杂网络的例子中,网络并不是单一的存在,而是多种网络相互作用的存在。对多层网络的研究成为当今复杂网络领域最重要和最前沿的研究方向之一。不同于其它多层网络的模型,本文主要研究的是含有有限种延迟的多层网络的同步和拓扑结构识别。本文主要内容分为六个部分:第一章是绪论,简单介绍了复杂网络的模型
本文主要介绍和讨论了离散周期序列空间l2(ZN)的J th阶离散周期波包框架的相关理论及框架在图像恢复中的应用.1991年至今,框架在刻画函数空间、信号/图像处理、采样理论、数字通讯等不同领域都取得了理论和应用方面等丰硕的研究成果,小波框架也得到了广泛应用和快速发展.而“高斯波包”概念的提出使得波包系(wave packet systems)成功用于解决物理中的问题,其波包函数系是由高斯函数通过伸
HtrA(High temperature requirement A)类丝氨酸蛋白酶广泛存在于古生菌、细菌、真菌以及动植物中。细菌中的HtrA类丝氨酸蛋白酶可以特异性降解受损蛋白质,而对保持正确构象和生理功能的蛋白质无水解活性,在调控菌体蛋白质平衡、缓解菌体的生存压力、提高病原微生物毒力和对宿主的感染能力和调控菌体与菌体之间的信息交流等方面具有重要作用。目前已知结构和功能的HtrAs大多来源于嗜
重夸克偶素为检验微扰量子色动力学和非微扰量子色动力学之间的作用提供了一个理想的环境,其中重夸克偶素之间的衰变尤其引起人们的兴趣。对于DD阈值以下的粲偶素,P波单态hc(11P1)和P波三重态χcJ(13pJ)的强子跃迁过程可以作为研究夸克之间自旋-自旋相互作用的最佳途径。自运行以来BESⅢ收集了大量的数据,使得BESⅢ实验成为粲偶素研究的重要场所,尤其在ψ(3686)处采集的447.9 × 106
半胱氨酸蛋白酶抑制剂是一类小分子蛋白,在植物中能够抑制papainC1A和legumainC13两类半胱氨酸蛋白酶的活性。这三个家族在高等植物发育过程中起着重要作用,例如种子萌发,花粉发育,细胞程序性死亡等,除此之外,也参与植物病原体防御以及对昆虫袭击和非生物环境因子胁迫的响应。研究蛋白酶与其抑制剂之间的关系,全基因组的鉴定和描述是一个非常有效的工具,同时这也能给三个家族蛋白的生物学功能提示些线索
水韭属植物在植物进化过程中占据重要的地位,水韭属植物是一类古老的物种,大约起源于泥盆纪时代,主要特征表现为孢子异型且植株高度退化,在植物系统进化上水韭属属于石松类群,为一类较为原始的维管植物,并且该属植物是现存唯一一类与古老植物石松近源物种。水韭属植物占据多种生态位,例如贫瘠的河流,小溪,湿地,湖泊,陆地等,并且可以反复地适应外界环境的变化,但是到目前为止并不知道水韭属植物是如何适应外界环境变化。
在有花植物中,雌配子体起始于胚珠原基顶端表皮下的一个珠心细胞,这个细胞随后分化为大孢子母细胞。大孢子母细胞经过两次连续的分裂形成四个单倍体的大孢子。在拟南芥中,其中三个孢子进行细胞程序性死亡,只留下合点端的一个大孢子,该细胞最终发育成为功能大孢子。功能大孢子进行连续的三次核分裂形成一个八核的合胞体。经细胞化之后形成一个七胞八核的胚囊结构:合点端的三个反足细胞,含有一个中央大液泡的中央细胞,以及珠孔
防御素是一种在先天免疫和适应性免疫中发挥了极其重要的作用的抗菌肽。近年来新的研究工作正在不断地丰富人类对它们生物学功能的全面认识。例如,我们课题组2015年以来首次报道了真菌防御素和人源防御素能够抑制T细胞膜上钾离子通道Kv1.3电流,调节细胞因子分泌的功能(Feng,Yang et al.2015,Xiang,Xie et al.2015,Xie,Feng et al.2015,Yang,Fen
背景:丙型肝炎病毒(Hepatitis C Virus,HCV)感染可导致慢性肝炎,肝硬化甚至肝癌。根据2017年世界卫生组织报告,全球估计有近7100万慢性HCV感染患者,每年约有39.9万人死于与丙型肝炎相关的肝脏疾病。我国HCV感染者和发病者总数均居世界首位,且近年来一直呈上升趋势。目前国内临床标准治疗方法为聚乙二醇干扰素α(Peg-IFNα)联合利巴韦林(ribavirin,RBV),但存