论文部分内容阅读
桃蚜(Myzuspersicae)是世界范围内危害经济作物最严重的害虫之一,除了对作物造成直接损害,还可以通过传播植物病毒病对作物造成间接损害。当前,化学防治仍是桃蚜防治的主要策略,但由于农药的长期大量使用,已使桃蚜对包括有机磷、氨基甲酸酯、拟除虫菊酯和新烟碱类等在内的多种杀虫剂产生抗性。在此背景下,新型杀虫剂的开发和应用将为桃蚜有效防治提供保障。氟吡呋喃酮、氟啶虫胺腈和环氧虫啶作为三种新型的新烟碱类杀虫剂,对包括桃蚜在内的多种刺吸式口器害虫表现出良好的活性,在桃蚜综合治理中具有广阔的应用前景。本文在实验室条件下开展了三种杀虫剂对桃蚜的亚致死效应研究,同时阐释了亚致死效应的生理代谢机制,并挖掘出三种杀虫剂作用下桃蚜的差异性基因。从生物学、生态学、生理生化及基因水平揭示了桃蚜对三种杀虫剂亚致死浓度胁迫的响应及作用机制,全面评价了三种新型杀虫剂对桃蚜的潜在影响,为三种杀虫剂的合理使用及减缓其抗性发展、延长药剂使用寿命提供理论参考。主要研究成果如下:
1.三种杀虫剂亚致死浓度(LC10和LC30)短期(24 h)处理桃蚜四龄若虫,均可显著降低桃蚜染毒个体(F0代)的繁殖量和寿命,这种不利影响随处理浓度的升高而显著的增强。氟吡呋喃酮和环氧虫啶亚致死浓度(LC10和LC30)以及氟啶虫胺腈LC10处理组均可缩短染毒个体子代(F1代)的发育历期及产卵前期,表现出明显的发育刺激作用;氟啶虫胺腈LC30处理组可使F1代发育速度减缓,生殖力显著降低。从种群参数上看,氟吡呋喃酮和环氧虫啶LC10和LC30处理组以及氟啶虫胺腈LC10处理组亚致死浓度胁迫,会促进桃蚜子代种群的增长,表现为内禀增长率显著升高,平均世代显著缩短;但氟啶虫胺腈LC30处理组桃蚜子代种群的增长受到严重的制约,表现为内禀增长率、净生殖率显著降低,而平均世代周期延长。终上所述,氟吡呋喃酮和环氧虫啶亚致死浓度(LC10和LC30)及氟啶虫胺腈LC10剂量均可引起桃蚜种群的毒物兴奋效应,但氟啶虫胺腈LC30剂量处理可显著抑制桃蚜种群增长。
2.三种杀虫剂亚致死浓度(LC10和LC30)作用下,桃蚜的扩散行为均受到明显的刺激,但不同药剂引起的扩散效果存在一定的差异。其中,氟啶虫胺腈和环氧虫啶处理组,亚致死浓度作用下桃蚜的扩散能力随着药剂浓度的增加及作用时间的延长显著增强,表现出明显的时间效应和剂量效应,但利用氟吡呋喃酮LC10和LC30浓度处理桃蚜,在相同的作用时间内(除了2h),桃蚜的扩散行为无显著性差异。桃蚜扩散能力的增强可能是生物体应对神经毒剂的反应,也可能是桃蚜应对不良环境的忌避作用,这一行为将有利于桃蚜逃离不利的生存环境,重新建立种群,这对害虫防治是十分不利的。
3.在三种杀虫剂亚致死浓度(LC10和LC30)作用下,桃蚜体内的靶标酶和解毒酶活性均受到一定的影响,但应激反应并不完全一致。对于乙酰胆碱酯酶(AChE),三种杀虫剂均表现出一定的诱导作用,其中氟吡呋喃酮和氟啶虫胺腈均表现出低浓度诱导高浓度抑制的作用,且随作用时间延长,AChE活性降低,而环氧虫啶供试浓度均会显著诱导AChE活性,且随作用时间延长,活性升高;对于羧酸酯酶(CarE),氟吡呋喃酮和氟啶虫胺腈处理组酶活力均受到显著的抑制,而环氧虫啶处理组CarE活性先升高后降低,表现出一定的诱导作用;三种杀虫剂对桃蚜体内的谷胱甘肽-S-转移酶(GSTs)均具有显著的抑制作用,且药剂浓度越高,抑制程度越强;氟吡呋喃酮LC10浓度处理后,桃蚜体内的多功能氧化酶(MFO)活性先升高后降低,LC30浓度处理组桃蚜体内的MFO活性受到显著抑制,而氟啶虫胺腈亚致死浓度(LC10和LC30)处理,桃蚜体内MFO随作用时间延长表现为先升高后降低;环氧虫啶亚致死浓度处理,也会使桃蚜体内MFO活性升高,但LC10浓度处理MFO活性先降低后升高,而LC30浓度处理MFO活性先升高后降低。上述结果说明除了GSTs,其他三种酶均参与了桃蚜的解毒代谢过程,但各种酶在解毒不同杀虫剂过程中所发挥的作用并不完全一致。
4.利用GC-MS方法测定了三种杀虫剂亚致死浓度胁迫下桃蚜体内营养物质含量的变化。结果显示,三种杀虫剂均会使桃蚜体内总脂肪酸含量显著降低,总糖含量显著升高,但各处理组脂肪酸及单糖组成及含量间存在显著的差异。氟吡呋喃酮和环氧虫啶亚致死浓度(LC10和LC30)胁迫,会显著降低桃蚜体内游离氨基酸的组成及含量;氟啶虫胺腈LC10浓度处理游离氨基酸种类及总氨基酸含量均会显著降低,而LC30浓度处理游离氨基酸种类及总氨基酸含量均会显著升高。表明桃蚜体内脂肪、氨基酸及碳水化合物等营养物质有可能参与了杀虫剂的降解及代谢过程。
5.为了探明桃蚜对三种杀虫剂亚致死效应的作用机制,本文对7组虫体样本进行转录组学分析。共得到145.24GbCleanData,各样品Q30碱基百分比均不小于93.72%。通过组装共得到77960条Unigene,Unigene的N50为1672,组装完整性较高。最终获得33940个有注释信息的Unigene。桃蚜经三种杀虫剂不同剂量处理后,转录图谱发生显著变化。与对照组相比,氟吡呋喃酮LC10和LC30处理组分别检测到189和427条差异表达的基因,氟啶虫胺腈LC10和LC30处理组分别检测到1762和2418条差异表达的基因,而环氧虫啶LC10和LC30处理组分别检测到148和388条差异表达的基因,这些差异表达基因主要集中在能量、物质代谢以及防御系统方面,包括与碳水化合物运输和代谢、氨基酸转运与代谢以及脂质转运与代谢相关的基因,以及与杀虫剂解毒代谢相关的细胞色素P450s基因。
综上所述,氟吡呋喃酮、氟啶虫胺腈和环氧虫啶亚致死浓度均可不同程度诱导桃蚜子代(F1)产生毒物兴奋效应,因此,三种杀虫剂均存较高的抗性发展风险及再猖獗现象产生的可能,在杀虫剂使用过程中应该严格按照农药使用标准科学合理用药,并降低农药使用频次。另外,在三种杀虫剂胁迫下,桃蚜通过提高扩散能力,增强营养代谢功能等实现生理解毒,使部分昆虫个体保存下来。通过功能注释发现,所有处理组与对照组相比,均存在细胞色素P450家族基因表达量上调,表明三种杀虫剂解毒代谢与P450s关系密切。
1.三种杀虫剂亚致死浓度(LC10和LC30)短期(24 h)处理桃蚜四龄若虫,均可显著降低桃蚜染毒个体(F0代)的繁殖量和寿命,这种不利影响随处理浓度的升高而显著的增强。氟吡呋喃酮和环氧虫啶亚致死浓度(LC10和LC30)以及氟啶虫胺腈LC10处理组均可缩短染毒个体子代(F1代)的发育历期及产卵前期,表现出明显的发育刺激作用;氟啶虫胺腈LC30处理组可使F1代发育速度减缓,生殖力显著降低。从种群参数上看,氟吡呋喃酮和环氧虫啶LC10和LC30处理组以及氟啶虫胺腈LC10处理组亚致死浓度胁迫,会促进桃蚜子代种群的增长,表现为内禀增长率显著升高,平均世代显著缩短;但氟啶虫胺腈LC30处理组桃蚜子代种群的增长受到严重的制约,表现为内禀增长率、净生殖率显著降低,而平均世代周期延长。终上所述,氟吡呋喃酮和环氧虫啶亚致死浓度(LC10和LC30)及氟啶虫胺腈LC10剂量均可引起桃蚜种群的毒物兴奋效应,但氟啶虫胺腈LC30剂量处理可显著抑制桃蚜种群增长。
2.三种杀虫剂亚致死浓度(LC10和LC30)作用下,桃蚜的扩散行为均受到明显的刺激,但不同药剂引起的扩散效果存在一定的差异。其中,氟啶虫胺腈和环氧虫啶处理组,亚致死浓度作用下桃蚜的扩散能力随着药剂浓度的增加及作用时间的延长显著增强,表现出明显的时间效应和剂量效应,但利用氟吡呋喃酮LC10和LC30浓度处理桃蚜,在相同的作用时间内(除了2h),桃蚜的扩散行为无显著性差异。桃蚜扩散能力的增强可能是生物体应对神经毒剂的反应,也可能是桃蚜应对不良环境的忌避作用,这一行为将有利于桃蚜逃离不利的生存环境,重新建立种群,这对害虫防治是十分不利的。
3.在三种杀虫剂亚致死浓度(LC10和LC30)作用下,桃蚜体内的靶标酶和解毒酶活性均受到一定的影响,但应激反应并不完全一致。对于乙酰胆碱酯酶(AChE),三种杀虫剂均表现出一定的诱导作用,其中氟吡呋喃酮和氟啶虫胺腈均表现出低浓度诱导高浓度抑制的作用,且随作用时间延长,AChE活性降低,而环氧虫啶供试浓度均会显著诱导AChE活性,且随作用时间延长,活性升高;对于羧酸酯酶(CarE),氟吡呋喃酮和氟啶虫胺腈处理组酶活力均受到显著的抑制,而环氧虫啶处理组CarE活性先升高后降低,表现出一定的诱导作用;三种杀虫剂对桃蚜体内的谷胱甘肽-S-转移酶(GSTs)均具有显著的抑制作用,且药剂浓度越高,抑制程度越强;氟吡呋喃酮LC10浓度处理后,桃蚜体内的多功能氧化酶(MFO)活性先升高后降低,LC30浓度处理组桃蚜体内的MFO活性受到显著抑制,而氟啶虫胺腈亚致死浓度(LC10和LC30)处理,桃蚜体内MFO随作用时间延长表现为先升高后降低;环氧虫啶亚致死浓度处理,也会使桃蚜体内MFO活性升高,但LC10浓度处理MFO活性先降低后升高,而LC30浓度处理MFO活性先升高后降低。上述结果说明除了GSTs,其他三种酶均参与了桃蚜的解毒代谢过程,但各种酶在解毒不同杀虫剂过程中所发挥的作用并不完全一致。
4.利用GC-MS方法测定了三种杀虫剂亚致死浓度胁迫下桃蚜体内营养物质含量的变化。结果显示,三种杀虫剂均会使桃蚜体内总脂肪酸含量显著降低,总糖含量显著升高,但各处理组脂肪酸及单糖组成及含量间存在显著的差异。氟吡呋喃酮和环氧虫啶亚致死浓度(LC10和LC30)胁迫,会显著降低桃蚜体内游离氨基酸的组成及含量;氟啶虫胺腈LC10浓度处理游离氨基酸种类及总氨基酸含量均会显著降低,而LC30浓度处理游离氨基酸种类及总氨基酸含量均会显著升高。表明桃蚜体内脂肪、氨基酸及碳水化合物等营养物质有可能参与了杀虫剂的降解及代谢过程。
5.为了探明桃蚜对三种杀虫剂亚致死效应的作用机制,本文对7组虫体样本进行转录组学分析。共得到145.24GbCleanData,各样品Q30碱基百分比均不小于93.72%。通过组装共得到77960条Unigene,Unigene的N50为1672,组装完整性较高。最终获得33940个有注释信息的Unigene。桃蚜经三种杀虫剂不同剂量处理后,转录图谱发生显著变化。与对照组相比,氟吡呋喃酮LC10和LC30处理组分别检测到189和427条差异表达的基因,氟啶虫胺腈LC10和LC30处理组分别检测到1762和2418条差异表达的基因,而环氧虫啶LC10和LC30处理组分别检测到148和388条差异表达的基因,这些差异表达基因主要集中在能量、物质代谢以及防御系统方面,包括与碳水化合物运输和代谢、氨基酸转运与代谢以及脂质转运与代谢相关的基因,以及与杀虫剂解毒代谢相关的细胞色素P450s基因。
综上所述,氟吡呋喃酮、氟啶虫胺腈和环氧虫啶亚致死浓度均可不同程度诱导桃蚜子代(F1)产生毒物兴奋效应,因此,三种杀虫剂均存较高的抗性发展风险及再猖獗现象产生的可能,在杀虫剂使用过程中应该严格按照农药使用标准科学合理用药,并降低农药使用频次。另外,在三种杀虫剂胁迫下,桃蚜通过提高扩散能力,增强营养代谢功能等实现生理解毒,使部分昆虫个体保存下来。通过功能注释发现,所有处理组与对照组相比,均存在细胞色素P450家族基因表达量上调,表明三种杀虫剂解毒代谢与P450s关系密切。