论文部分内容阅读
近二三十年以来,随着微电子技术、电力电子技术、传感器技术、电机制造技术以及先进的控制理论等支撑技术的飞速发展,以永磁同步电动机为主控对象的交流伺服系统逐步取代了直流伺服系统,在工业机器人、数控机床、柔性制造系统、包装机械、大规模集成电路制造、雷达等各种军用武器随动系统以及航空航天等方面得到广泛应用。交流伺服系统是一个涵盖了机械、电子、电机等大学科,并涉及到强电与弱电控制,复杂的非线性多耦合控制系统。研究与开发高性能的交流伺服系统一直是现代机械制造工业和军事工业的关键技术之一。控制器性能的提高可以大幅度地提高交流伺服系统性能,目前各种先进的控制策略和算法不断涌现,将这些先进的控制策略和算法应用于交流伺服系统将有效的提高伺服系统的控制性能。首先,本文建立了永磁同步电动机分别在ABC坐标系和d-p坐标系中的数学模型,为伺服控制系统的设计提供依据。选择了空间矢量脉宽调制(SVPWM)算法来驱动逆变器,并在Matlab/Simulink软件中建立了基于SVPWM的交流伺服系统仿真模型。对采用PID控制的系统模型并进行了调试和仿真,验证了模型的正确性。其次,根据永磁伺服系统运行中存在各种各样干扰的特点,将干扰观测器(DOB)理论应用于伺服系统。在伺服系统采用PID控制器的基础上,在位置环中加入一个干扰观测器,其作用是提高系统的抗干扰能力,使控制误差减小。仿真表明DOB加入以后系统的抗干扰能力及跟踪精度都有所提高。然后,设计了一种模糊自适应PID控制器,它结合了模糊控制和自适应控制方法具有的较好鲁棒性、不需要系统精确模型、设计方法简单实用的优点,来实时整定PID参数,根据控制经验使系统获得较满意的控制效果。仿真显示这种控制器能准确地反映误差的变化,可以在误差较小时弥补模糊控制的不足,使误差进一步减小,从而大大提高跟踪性能和稳定性。最后,介绍了永磁交流伺服系统驱动器的基本情况,主要阐述了功率驱动电路的计算和设计,为PMSM实验平台的建立做前期准备工作。