论文部分内容阅读
木棉纤维是天然的具有中空与薄壁结构的非棉纤维素纤维,具有保健、保暖、超轻等特性。长期以来,木棉纤维主要应用于絮填料(如被褥、枕头、棉衣等)、隔热和吸声材料、浮力材料(如救生衣等水上救生用品)等,在服装、服饰等方面的应用却鲜有报道,是没有在服装、服饰行业得以广泛应用的天然纤维素纤维之一。究其原因,一是可纺性较差,二是染色性能差(上染率极低)。近年来,木棉纤维可纺性差的缺陷得到了有效的解决,但木棉纤维染色性能差的原因以及改善的方法很少见报道。本论文探讨了采用阳离子改性、超支化聚合物改性、等离子体表面处理及稀土改性等方法对木棉纤维预处理,以实现活性染料在木棉纤维上的染色的可行性。主要研究内容涉及如下方面:(一)木棉纤维的稀土改性与活性染料染色性能研究了稀土对木棉纤维的改性,以及活性染料NOVACRON RED FN-R在改性后木棉纤维上的染色性能。研究内容包括:稀土种类的筛选、稀土改性方式以及稀土媒染剂的配制等。结果表明:在活性染料NOVACRON RED FN-R对木棉纤维的稀土改性媒染工艺中,相对于稀土铈和钕,稀土镧的改性效果较好;同浴媒染处理效果较好;柠檬酸作为络合剂与氯化镧形成媒染剂的配比为1:1较合适;媒染剂用量0.8%(o.w.f.)、染料用量1%(o.w.f.)、氯化钠浓度10~20g/L、浴比1:50、60℃入染30min后,加碱剂10g/L固色60min。与未改性木棉纤维相比,媒染改性后,染料NOVACRON RED FN-R的上染率由38%提高到70%;固色率由29%提高到68%;皂洗牢度由4级提高到4~5级;染色K/S值基本无变化。(二)木棉纤维的阳离子改性及活性染料染色工艺以自制的阳离子改性剂对木棉纤维进行改性,以红外光谱和小角X衍射仪对阳离子改性前后木棉纤维的分子结构进行了表征,采用粒度与电位分析仪对改性前后木棉纤维的表面电势进行了分析。阳离子改性工艺为:改性剂的用量10%(o.w.f.);改性液的p H值10~12;改性液温度75℃;改性时间45min。改性后用活性染料NOVACRON RED FN-R进行染色,染料0.5~1.0%(o.w.f.)、温度40℃、Na Cl 20g/L、染色30min后加入10g/L的Na2CO3碱固色90min,染料在木棉纤维上的上染率可达90%以上。红外光谱测试表明:阳离子改性后的木棉纤维上,归属于C-O的伸缩振动(C-Ost)及-OH的面内弯曲或面内剪切振动(O-Hδ)的1510~1245cm-1区域的吸收峰变小或消失,表明改性剂中的长链脂肪烃-(CH 2)11-CH 3接枝到了木棉纤维分子上而限制了O-H的面内弯曲或剪切振动;Segal经验法分析表明:对纤维改性前后的晶粒尺寸、相对结晶度进行计算,发现改性前后的木棉纤维的微结构基本无变化;粒度与电位分析仪的分析表明:随阳离子改性剂浓度的增加,改性后木棉纤维在水溶液中的Zeta电位逐渐增加。(三)超支化聚合物的合成及其在木棉纤维活性染料染色中的应用以官能团活性不等的丙烯酸甲酯和二乙烯三胺为单体,采用不等活性双组份单体对法,甲醇做溶剂,合成了水性端氨基超支化聚合物(HBP-NH2),并将其与自制的阳离子改性剂接枝,合成了季铵盐化超支化聚合物(HBP-HDC)。通过紫外分光光度计、红外分光光度计、核磁共振仪及乌氏粘度计对产品进行了表征。红外及紫外光谱分析确证了HBP-NH2的制备成功;核磁共振谱图确证了HBP-NH2与阳离子改性剂接枝成功,得到了季铵盐化的超支化聚合物HBP-HDC;HBP-NH2与HBP-HDC的最大吸收波长在245和295nm处;在强极性溶剂(如:水、乙醇等)中,HBP-NH2与HBP-HDC具有较好的溶解性能,在非极性溶剂(如:丙酮、氯仿等)中溶解性较差;HBP-NH2特性粘度[η]=4.313ml/g。木棉纤维经HBP-NH2改性后,表面富含活性氨基,活性染料NOVACRON RED FN-R在改性后木棉纤维上的上染率由38%提高至75%左右,固色率与K/S值均有不同程度的提高。为提高HBP-NH2在木棉纤维上的结合牢度,对木棉纤维进行了半氧化改性,红外光谱分析发现改性后有新吸收峰出现,位置在1729 cm-1附近,经与标准谱图对比,归属于醛基中C=O伸缩振动,产生了醛基,半氧化改性成功。活性染料NOVACRON RED FN-R在HBP-NH2改性的半氧化木棉纤维上的上染率为85%,固色率为65%,K/S值约为6,水洗牢度为4级。经HBP-HDC改性后,活性染料在木棉纤维上的上染率可达近100%,固色率为77%,K/S值和耐水洗牢度均有进一步的提高。(四)等离子体处理对木棉纤维染色性能的影响及木棉纤维疏水原因探究NOVACRON RED FN-R在经过常压空气等离子体处理后的木棉纤维上的上染率为84%,固色率65%,水洗牢度4-5级,K/S值6.3;在氧气等离子体处理后的木棉纤维上的上染率为80%,固色率62%,水洗牢度4-5级,K/S值6.7;在氮气等离子体处理后的木棉纤维上的上染率为76%,固色率57%,水洗牢度4级,K/S值5.4。SEM观察表明:等离子体处理后木棉纤维的表面产生明显刻蚀,刻蚀的程度与等离子体处理的气体环境有关,在空气、氧气和氮气环境中产生了多或深的刻蚀;动态接触角观察表明:木棉纤维经过氧气等离子体处理后,与水的接触角由原来的119.19°减小到94.6°。X射线光电子能谱仪(XPS)测试结果表明:经空气、氮气与氧气环境的等离子体处理后,木棉纤维表面C-C基团含量均有不同程度下降;C-O基团含量均有不同程度增加,甚至出现了C=O基团。说明经不同气体环境的等离子体处理后,木棉纤维表面C-C等疏水基团的含量降低,C-O与C=O等亲水基团含量有所增加,纤维的亲水性有提高。经氧气与空气环境中等离子体处理后,木棉纤维表面-OH基团含量分别增加了50%与80%,氮气环境中处理,-OH基团含量减少了53%;-C=O含量有所增加,-O-C=O基团含量减少。说明在空气及氧气环境中用等离子体对木棉纤维进行处理,处理后纤维表面亲水性极强的-OH含量有了极大的提高,纤维的亲水性得以提高。(五)木棉纤维染色性能差原因分析木棉纤维染色性能差的原因除了与纤维素含量低以外,还与其表面的形态特征及表面元素含量有关,木棉纤维的外壁非常光滑,使得木棉纤维具有疏水亲油的特性,导致染液无法在其上铺展及润湿纤维,染料不易上染。再者,纤维表面-C-C基团、-C=O与-C-C=O等亲水性较差的基团含量较高,也是造成纤维疏水的原因之一,同样使得染液无法在其上铺展及润湿纤维,染料不易上染。因此,木棉纤维染色性能差的原因是因其纤维素含量低、表面光滑、疏水亲油以及纤维中亲水性基团少的特点而导致染液无法在其上润湿、铺展。