论文部分内容阅读
纳米材料有“21世纪最有前途的材料”之美誉,被认为是跨世纪材料研究领域的热点。纳米颗粒具有比表面积大、表面反应活性高、吸附能力强、催化效率高等特性,为化学发光和传感器的发展提供了新的研究途径。本论文首先综述了纳米微粒的特性、制备方法及在传感器和化学发光中的应用。在此基础上,选择纳米金和纳米银为模型金属纳米粒子。一方面,研究纳米微粒在化学发光中的应用,探讨其参与液相化学发光的行为规律和机理等,为寻找新的化学发光体系奠定了基础;另一方面,研究纳米微粒在传感器中的应用,将适体技术和纳米科技相结合,利用纳米微粒作为探针在分子识别领域对物质进行检测。本论文的主要研究内容如下:1.发现纳米金能够增强铈(IV)-亚硫酸钠-诺氟沙星化学发光体系。通过对化学发光谱图、荧光光谱、紫外可见吸收光谱和透射电镜图进行研究,提出化学发光体系可能的发光机理为:纳米金能促进自由基的形成,并且加速纳米金表面的电子转移速度。测定的诺氟沙星线性范围为7.9×10-7 ~ 1.9×10-5 mol·L-1,检出限为8.2×10-8 mol·L-1。此方法被成功应用于尿液检测。2.基于铽(III)能敏化铈(IV)和亚硫酸钠化学发光体系检测诺氟沙星,注入纳米银后,体系的发光信号增强,据此建立了一种检测诺氟沙星的新方法。在最优条件下,测定了诺氟沙星线性范围为2.0×10-7 ~ 4.0×10-5 mol·L-1,检测限为3.0×10-8 mol·L-1。对化学发光可能的机理进行了探讨。3.利用Hg2+的核酸适体修饰纳米金形成探针,建立了一种定量检测Hg2+离子的方法。Hg2+适体吸附在纳米金表面,使纳米金的稳定性增强,抑制氯化钠对纳米金的团聚作用。溶液中有Hg2+离子存在时,由于适体与纳米金的吸附作用小于适体与Hg2+离子的亲和作用,纳米金失去适体保护在氯化钠作用下发生团聚。溶液颜色由红变蓝,紫外可见光谱最大吸收峰由520 nm红移至620 nm。在最优条件下,吸光度的比值(A620/A520)与Hg2+离子浓度在5.0×10-9 ~ 7.2×10-7 mol·L-1范围内呈线性关系,检测限可达3.3×10-10 mol·L-1。研究了K+、Ca2+等常见离子的干扰,结果表明,该方法具有良好的选择性。4.提出了一种采用纳米银为探针检测Hg2+离子的新方法。利用适体保护纳米银,抑制碘化钾对纳米银的团聚现象;若Hg2+离子存在,适体与Hg2+离子结合,纳米银失去保护发生团聚,通过紫外可见吸收峰的比值A584/A398对Hg2+离子进行检测。Hg2+离子线性浓度范围为4.00×10-9 ~ 2.09×10-6 mol·L-1,其检出限为5.84×10-10 mol·L-1。该方法对Hg2+离子有特异性,测定了实际水样中的Hg2+离子,为环境监测和生物样品分析提供了有力的工具。