【摘 要】
:
太赫兹拥有的低能性、生物分子指纹谱等独特性质使其在生物医学方面有着巨大的应用潜力,然而,由于太赫兹与传统材料制作的器件的相互作用较弱,难以实现生物样品的高灵敏探测。相比之下,超材料制作的太赫兹传感器件与电磁波的相互作用更强,有助于提高太赫兹探测的灵敏度。同时,随着微流控技术在太赫兹领域的应用,微流控与超材料结合的太赫兹传感器为实现太赫兹高灵敏检测提供了新思路,但是低灵敏度和Q值无法满足许多实际应用
论文部分内容阅读
太赫兹拥有的低能性、生物分子指纹谱等独特性质使其在生物医学方面有着巨大的应用潜力,然而,由于太赫兹与传统材料制作的器件的相互作用较弱,难以实现生物样品的高灵敏探测。相比之下,超材料制作的太赫兹传感器件与电磁波的相互作用更强,有助于提高太赫兹探测的灵敏度。同时,随着微流控技术在太赫兹领域的应用,微流控与超材料结合的太赫兹传感器为实现太赫兹高灵敏检测提供了新思路,但是低灵敏度和Q值无法满足许多实际应用的需求。本文以高Q、高灵敏的太赫兹生物传感器为研究目标,在超材料吸收器的理论基础上使用电磁仿真软件CST进行了数值仿真研究和实验测试:(1)提出了三种基于平面谐振结构的太赫兹生物传感器。第一种传感器通过Z型金属棒的旋转叠加增强了单元结构电场从而激发偶极子谐振,在0.66 THz处产生Q值高达50.77的吸收峰,灵敏度为184 GHz/RIU,可实现乙醇溶液浓度和番茄DNA的区分。第二种传感器将圆环和双I交叉结构组合从而产生两个偶极子谐振激发的吸收峰,灵敏度可达300 GHz/RIU,可有效区分禽流感病毒亚型和牛血清白蛋白溶液浓度。第三种传感器由于谐振环中不对称开口的引入在激发偶极子谐振的同时产生Fano谐振,在0.2~1.6 THz频段出现了四个吸收峰,灵敏度最高为356.6 GHz/RIU,通过番茄DNA和牛血清白蛋白溶液的模拟光谱得到的折射率推算值相较于前两种传感器的推算值更接近于实际。(2)提出了一种基于三维双I型谐振结构的太赫兹生物传感器。当入射磁场分量垂直于立体双I型结构时激发了LC谐振,产生Q值高达72的吸收峰,灵敏度最高可达832 GHz/RIU。对比于平面结构传感器,其在Q值和灵敏度方面具有明显的优势,得到的番茄DNA折射率推算值与实际误差仅为0.009。(3)通过微纳加工工艺对部分基于平面谐振结构的太赫兹生物传感器进行了加工制备,在反射式太赫兹时域光谱系统中使用不同浓度的乙醇溶液进行了测试。实验结果证明加工的传感器可有效区分0%~100%的乙醇溶液,也可推广至其他混合溶液的检测。
其他文献
目前在工业生产中还使用着大量的老式指针仪表和无数据通信接口的数字仪表,对数据的记录还需人工完成。人工数据采集工作强度大、效率低,更换智能化仪表投入大、成本高,在一些特殊环境中,还存在一些安全隐患。此外,现阶段现场人工数据采集已经满足不了当前快速发展的生产、科研需求。因此,利用机器视觉对仪表图像进行识别的方式将越来越适用。本文以实际应用中常见的两类仪表为研究对象,对仪表图像的预处理、目标表盘检测定位
由于现实数据中存在多种模态、视图或表示,多视图学习近年来受到了广泛关注。通常,这些算法通过直接利用原始数据来学习分析样本间的关系。然而,在实际应用中,1)位于原始数据空间的数据鉴别能力相对不足。大多数方法假设数据具有线性分布,但真实情况却是数据往往分布在非线性流形上;2)多视图数据的“维度灾难”问题一直困扰着多视图方法的发展,雪上加霜的是其中夹带的噪声和离群点更进一步影响了方法对子空间底层结构的挖
安定剂是火箭推进剂中的重要组分,通过吸收硝酸酯吸水或受热分解时产生的酸和氮氧化物,可以有效缓解推进剂发生自催化分解的速度,延缓老化进程,保证其贮存稳定性。安定剂含量的可靠监测对准确了解推进剂老化情况,预估使用寿命至关重要。由于目前安定剂含量检测方法主要有着操作繁琐、费时费力、精确度较低等问题。因此亟需寻求一种无损、快速、有效、精确的安定剂检测方法。太赫兹时域光谱(THz-TDS)技术因对被测物质几
在制造业快速发展和大数据时代的背景下,设备的复杂程度、精密程度不断增加,设备维修管理被越来越多的企业重视,设备维修方案的相关推荐方法也得到很多人的关注。将人工智能应用到维修推荐方案上,进一步改善设备维修工作,辅助维修人员做出更好的维修策略,减少因设备故障给企业带来的损失。本文以车辆设备维修作为研究对象,从车辆故障问题匹配和维修方案决策两个方面对维修方案推荐方法进行研究。基于历史故障问题,依据本文提
炸药在国防和工业生产领域具有广泛的应用,FOX-7和CL-20作为两种典型单质炸药,具有重要研究价值。炸药在应用中通常会受到复杂外部条件作用,热刺激是其中最广泛的影响因素,这种影响促使炸药形成在微观结构和宏观特性上存在显著差异的不同晶相,给武器装备的安全性带来了挑战。现有研究表明,炸药分子的结构及相关环境信息与分子间的弱作用力密切相关,而这些弱作用力振动频率主要集中在太赫兹频段。因此,相较于传统的
射频识别(Radio Frequency Identification,RFID)技术是使用射频波传输数据的非接触式无线通信技术,相比光学条形码技术具有无视距要求、识别速度快、识别距离远、支持多标签同时识别等优点。RFID系统相比条形码有显着的进步,然而,要实现智能识别系统在廉价商品级标签方面的潜力,仍然存在许多挑战尚未解决。与现有的芯片RFID系统相反,无芯片RFID系统消除了对昂贵的微芯片的需
太赫兹波具有的独特优势使其在多个学科领域内应用广泛,太赫兹基础技术及相关器件成为了研究热点。1THz频段以下的太赫兹技术理论体系及器件应用日趋成熟,受限于实际制造工艺和理论等多种因素,更高频段的太赫兹器件尚需研究。为满足4THz频段变频需求及构建更高探测精度的太赫兹谱仪,亟需研究4THz频段混频器。为满足4THz频段混频需求,本文首先设计优化了高截止频率肖特基二极管。采用本文提出的肖特基二极管设计
近年来,随着信息技术的快速发展,人们获取信息的手段逐渐多样化,在许多科学和工业领域获取了大量的多视图数据。如何从这些多视图数据中挖掘有用信息,已经成为目前机器学习领域的研究热点。多视图聚类,旨在根据多视图数据中隐藏的结构信息,将其分割为若干个类簇,从而取得了令人满意的聚类结果,因此逐渐受到了学术界与产业界的广泛关注。基于子空间学习的多视图聚类算法通过将原始数据的高维特征空间建模为多个线性子空间,解
核技术研究已广泛应用于教育、电力等多种领域,但随着时间的推移,部分老化的核设施面临着退役的问题,退役过程中,固体核废物的分拣与处置方式是核退役任务的重要课题之一,不同类型的固体废物需要安全合理地进行分类处置,避免带来环境污染。随着科学技术的发展,视觉图像研究技术和SLAM定位技术有了很大程度上的进步,在各个领域都有广泛应用。但目前核废物分拣过程中,仍有大多数采取人工或半人工模式,存在效率低下,危险
为了满足日渐增多的通信业务需求,3GPP提出5G通信支持的三大应用场景:高可靠低时延通信(URLLC)、增强型移动宽带(e MBB)和大规模机器类通信(m MTC),其中,e MBB业务用于应对有高传输速率要求的场景,其目标是提供更大的数据带宽;URLLC业务则主要应用于对数据传输的时效性以及可靠性有极高要求的场景。现阶段5G通信中e MBB业务发展已经相对稳定,进而寻求URLLC与e MBB混合