【摘 要】
:
光遗传学技术是神经科学研究中的重要工具,然而基于有线光纤的实验系统对动物施加了较强的约束,难以适用于动物行为学研究。为了实现对动物的无约束光刺激,本文面向光遗传学激光辐照系统中的动物定位需求,研究并设计了基于深度学习的目标跟踪算法。针对实验动物姿态多变、运动随机性强所致的特征缺失问题,本文提出一种基于对抗式学习的目标跟踪网络ATNet。该目标跟踪网络引入残差注意力模块以优化目标的特征提取过程,突出
论文部分内容阅读
光遗传学技术是神经科学研究中的重要工具,然而基于有线光纤的实验系统对动物施加了较强的约束,难以适用于动物行为学研究。为了实现对动物的无约束光刺激,本文面向光遗传学激光辐照系统中的动物定位需求,研究并设计了基于深度学习的目标跟踪算法。针对实验动物姿态多变、运动随机性强所致的特征缺失问题,本文提出一种基于对抗式学习的目标跟踪网络ATNet。该目标跟踪网络引入残差注意力模块以优化目标的特征提取过程,突出实验场景中目标区域的特征并抑制背景区域的特征;同时结合生成对抗学习方法,使用掩膜生成网络从图像特征和注意力信息中学习如何鉴别目标的关键特征,从而在训练时增强正样本,提高跟踪网络识别特征缺失样本的能力;同时利用注意力信息选取语义区域作为负样本,以减少跟踪器的漂移并提高定位精度。为了解决动物脱离视野所致的目标丢失问题,本文提出一种基于异常检测的长期目标跟踪算法和启动策略。本文根据图像样本间的余弦相似度检测异常的跟踪结果,并使用一种反映目标变化剧烈程度的动态阈值来适应不同的目标;通过样本重演方法减少了跟踪器对目标特征的遗忘,提高了跟踪器在丢失发生后重新正确识别目标的能力;当目标丢失时,根据局部区域的轮廓特征提议候选区域,以加快重检测的速度,提高跟踪过程中的定位效果。本文在公共跟踪数据集和光遗传学实验小鼠影像数据集上进行了测试。实验结果显示,本文提出的基于对抗式学习的目标跟踪网络具有良好的跟踪精度,与其他跟踪方法相比,该方法使平均跟踪误差从16.96像素降低到8.48像素,跟踪过程的精度达标时间比例从36.3%提高到57.9%;在加入基于异常检测的长期跟踪算法后,与单独使用本文提出的目标跟踪网络相比,目标出界场景下的平均跟踪误差从13.24像素降低到6.78像素,精度达标时间比例从48.4%提高到87.4%。实验结果表明,本文提出的目标跟踪算法满足了光遗传学激光辐照系统对实验动物定位的需求,有利于无线式光遗传学实验的实施。
其他文献
随着地下交通逐渐发达,越来越多的盾构隧道施工过程中需要穿越河流桥梁,盾构穿越河堤会引起堤岸沉降过大甚至出现坍塌等工程事故,且对桥梁桩基产生扰动,严重情况会发生位移变形开裂,影响桥梁的正常使用。因此研究盾构穿越河流及桥梁的影响并提出合理控制措施具有重要意义,对之后类似工程具有重要的指导和参考价值。本文首先结合盾构穿越河流工程实测,通过有限差分软件FLAC 3D对双线盾构施工穿越河流进行了精细化模拟,
全断面硬岩掘进机(Tunnel Boring Machine,TBM)是开发地下空间的有利工具,其用处越来越广泛。刀盘作为掘进工作中核心受力载体,承受多方向的随机载荷,容易萌生裂纹导致疲劳失效,影响施工进度和安全。数据显示,刀盘失效主要由裂纹导致,并且超过50%的TBM掘进事故由刀盘失效引起,可见研究刀盘的裂纹损伤特性及疲劳可靠性具有重大实际意义。基于以上研究背景,本文开展的核心工作及得出的结论如
水环境中的桥梁在地震动作用下承受水动力作用,对桥梁的响应与抗震性能产生影响,近年来受到学者们广泛关注。水下振动台试验设备的成熟与完善,为处于水环境中的工程结构抗震性能研究提供了条件。现代振动台试验方法在弹性范围内已建立较为完善的缩尺理论。然而,在有水环境中,由于水体密度无法改变的原因,导致桥梁所受到的水动力作用无法完全满足相似定律,试验时水动力作用效果在缩尺模型中下降。近年所提出的水下振动台试验协
联硼酸频哪醇酯(B2pin2)参与的炔烃的碳硼化反应是构建烯基硼化合物的有效方法之一,在有机合成中具有广泛的应用。环外烯烃骨架广泛存在于天然产物和药物分子中,发展绿色高效的环外烯烃骨架的构建方法具有重要的研究价值。本论文的第一部分工作发展了铜硼络合物催化的炔烃卤代物的分子内环化反应。该反应以一价铜和B2pin2为催化剂,通过对反应条件的精确调控,可以选择性合成硼取代或者碘取代的环外烯烃化合物,以及
氟是元素周期表中电负性最大的元素,氟原子是除氢原子以外半径最小的原子,因此含氟化合物往往具有一系列特殊的性质。向有机分子中引入氟原子或者含氟基团可以明显改善母体分子的物理、化学和生物活性等性质。故而氟原子被广泛用于药物和生物活性分子的设计与合成中。含有二氟亚甲基(CF2)结构单元的有机化合物在农药、医药等领域具有广泛的应用,利用二氟烷基化试剂对有机化合物分子进行修饰成为有机氟化学领域的研究热点之一
整体桥为采用整体式桥台的桥梁体系,其中主梁与桥台可浇筑成整体,避免在桥头设置桥面伸缩缝及支座,显著降低了施工尤其是运营维护成本,在国内外得到了越来越广泛的推广及应用。将整体式桥台引入斜交桥中,形成整体式斜交桥,可有效避免斜交桥面板及主梁在地震作用下的扭转落梁现象,但亦会产生复杂的桥台-桩-土相互作用,亟需进一步深入研究。因此,以某整体式斜交桥为原型,设计制作了正交桥台-H型钢桩及斜交桥台-H型钢桩
蒽醌类化合物是一种重要的精细化学品,广泛应用于染料、造纸和抗癌医药等领域,同时也是蒽醌法合成双氧水的重要原料。目前蒽醌的合成方法有5大类:甲酰基蒽醌转换法、蒽直接氧化法、苯乙烯法、萘醌法、苯酐法。国内大多采用苯酐法作为生产蒽醌的技术路线,但由于使用AlCl3与浓硫酸为催化剂,污染严重,废液处理成本高,需要研究新的催化剂或者更换合成工艺路线。本文概述了蒽醌类化合物的几种合成方法路线,并讨论了各种路线
在岩体工程施工与运营期,岩体经常受到爆破、地震等动态扰动,扰动以应力波的形式在岩体中传播。工程岩体中广泛存在的非贯通节理会导致应力波振幅衰减、相位变化以及波速减慢。而且,相较于贯通节理而言,断续节理产生的应力波反射,透射,散射现象更为复杂。因此,研究断续节理岩体中的应力波传播和衰减规律,对岩土工程、防护工程、地质工程、地球物理勘探等有着非常重要的科学意义与工程价值。开展断续节理岩体中的应力波传播规
土木工程专业是典型的传统工科专业,在新工科建设背景下普遍面临教育理念落后、课堂教学有效性差、创新培养方式单一、课程思政协同育人机制不健全等问题。吉林大学土木工程专业以价值塑造、能力培养、知识传授“三位一体”教育理念为统领,以培养符合科技发展和产业革命需求的土木工程创新人才为目标,系统设计“思政、课程、实践、竞赛、科研”五位一体人才培养模式,以“夯实基础、强化实践、激励创新”为原则构建课程体系,以“