【摘 要】
:
晶粒细化是提升金属材料综合性能的重要方法之一,剧烈塑性变形方法可大幅细化晶粒,提升材料性能,受到学者们的广泛关注。然而,现有变形方法在制备大规格细晶材料以及规模化生产和应用方面还存在一些困难。本文采用自行研发的连续等厚挤压设备,对纯铜和纯铝带材进行了多道次剧烈变形实验,研究了不同变形道次、不同模具参数以及热处理制度对纯铜带材微观组织和性能的影响,对制备细晶或超细晶金属板带材的技术研发及其工业化应用
论文部分内容阅读
晶粒细化是提升金属材料综合性能的重要方法之一,剧烈塑性变形方法可大幅细化晶粒,提升材料性能,受到学者们的广泛关注。然而,现有变形方法在制备大规格细晶材料以及规模化生产和应用方面还存在一些困难。本文采用自行研发的连续等厚挤压设备,对纯铜和纯铝带材进行了多道次剧烈变形实验,研究了不同变形道次、不同模具参数以及热处理制度对纯铜带材微观组织和性能的影响,对制备细晶或超细晶金属板带材的技术研发及其工业化应用具有重要意义。本文选用2 mm厚的T2工业纯铜和1060工业纯铝带材作为研究对象,研究了铜铝带材在等厚挤压变形以及热处理过程中微观组织与性能的变化规律。通过本文研究获得如下主要结果:(1)采用不同变形量的模具对纯铜进行等厚挤压变形后晶粒的细化程度有所不同。纯铜带材在采用通道夹角125°的模具(单道次变形量为0.57)变形时可进行16道次连续等厚挤压。变形后横、纵截面尺寸分别由11.57 μm和18.17μm细化至5.92μm和7.88μm;采用通道夹角120°的模具(单道次变形量为0.635)时可进行5道次等厚挤压变形,变形后横、纵截面尺寸分别由9.63 μm和11.73 μm细化至5.73 μm和5.95 μm,硬度由104.83 Hv 提升到 142.24 Hv。(2)等厚挤压变形可以有效细化纯铝带材的晶粒,采用通道夹角120°的模具对纯铝带材可进行3道次变形,变形后横、纵截面尺寸分别由47.57μm和46.23μm细化至24.12μm和26.19 μm,同时,硬度由64.08 Hv提升到81.27 Hv。(3)多段高温短时的分段退火方案有助于进一步细化晶粒。其中经通道夹角125°的模具变形6道次的纯铜试样在采取420℃ ×(1+1+1)min的方式处理后,横截面平均晶粒尺寸由退火前的6.61 μm变为6.19 μm,纵截面的平均晶粒尺寸由退火前的11.35μm变为7.81 μm,且更加均匀,各向异性的程度得到一定改善。(4)变形后金属的拉伸性能得到提高,其中采用通道夹角120°的模具变形4道次采取350℃ ×(1+1+1)min的方式退火后纯铜试样的抗拉强度由未变形时的247.78 MPa提升到324.56 MPa,屈服强度由160.81 MPa提升到310.35 MPa;采用通道夹角1200的模具变形3道次经250℃ ×(1+1+1)min退火后纯铝试样的抗拉强度由未变形时的抗拉强度由65.96 MPa提升到193.26 MPa,屈服强度由45.36 MPa提升到181.16 MPa。(5)变形过程中是否对金属带材施加张力对变形后的组织形貌影响不大。本文的研究工作表明本文提出的等厚挤压变形可以有效细化晶粒并提升材料的强度,对于探索金属带材细化的工业加工、细晶材料的热处理工艺探究具有重要的参考价值和理论研究价值。
其他文献
在课程不断深入改革的背景下,从过去强调发展学生的能力升华到发展学生核心素养,教育改革也逐渐走向成熟,2018年颁布的《普通高中数学课程标准(2017年版)》提出了六大核心素养.其中直观想象能够启迪学生发现和解决问题,是学生进行论证、推理的思维基础,因此发展高中生的直观想象核心素养意义重大.发展高中生直观想象核心素养的重要载体是高中数学教材,那么研究高中数学教材是发展高中生直观想象核心素养的必经之路
目的:胶质细胞是中枢免疫细胞,参与中枢神经免疫反应,研究报道其参与神经病理性疼痛(Neuropathic Pain,NP)的发生和发展过程,而环氧合酶-2(cyclooxygenase-2,COX-2)催化合成的前列腺素是至关重要的致炎介质。本实验为探索COX-2在NP中的相关机制,从行为学、形态学到分子生物学层面分别探讨COX-2在大鼠脊神经结扎(spinal nerve ligation,SN
Mg2Si相因其具有优良的热力学特点以及适中的弹性参数等优点,可以使合金的力学性能得到明显改善,是理想的增强相。Mg-Al-Si系合金与其他Mg-Al系合金相比,由于添加了Si元素,形成的Mg2Si相可显著提升合金的室温、高温强度,可应用于工况更复杂且要求更高的场合。细小且分布均匀的Mg2Si相可以提高合金的综合力学性能,而偏聚分布的Mg2Si相则有利于功能梯度材料的制备。本文以Mg-9Al-3S
近年来,随着大数据技术、人工智能的高速发展,推荐系统已经融入到人们日常生活的方方面面。个性化推荐也受到了学术界和工业界的高度关注,各类优秀的研究成果层出不穷。本文基于主成分分析方法(PCA),分析了不同推荐算法的相似性矩阵中隐藏的数据特征,并将其用于改进推荐算法。具体的研究内容如下:(1)基于数据特征研究的改进协同过滤推荐算法。首先,通过分析相似性矩阵的特征向量的贡献率以及特征值的分布情况,发现绝
小麦是世界上三大主要粮食作物之一,干旱对其产量和品质造成了严重的影响。本课题组前期研究结果初步表明小麦核氧还蛋白基因(TaNRX-D1)与抗旱性相关,而进一步验证其抗旱性功能,明确其在细胞内的位置和互作蛋白,可为研究其抗旱机理奠定基础。本研究通过遗传转化技术,在拟南芥中过表达TaNRX-D1基因来验证其抗旱性功能;采用亚细胞定位技术,在小麦原生质体中观察TaNRX-D1的亚细胞位置;通过酵母双杂交
近年来,随着互联网技术的飞速发展和以深度学习为代表的人工智能技术的重大突破,视频监控系统已经具有网络化、高度智能化的特点。视频监控系统渐渐融入寻常百姓家,已成为智能家居的重要组成部分,人们越来越重视家居方面的安全,视频监控系统在家庭安防领域具有巨大的市场价值和研究价值。本文在研究市场上成熟的家庭视频监控系统后,以萤石网络摄像机为例,发现其视频传输技术虽然成熟,但采用的流媒体协议为私有协议,不支持多
随着信息化时代的到来,世界范围内的经济、科技、人才竞争日趋严峻。在这个大背景下,着力培养适合时代发展的高素质人才,提升学生学科核心素养便成为了新时代教育改革发展的历史使命和必然方向。随着大数据、人工智能等现代科技的发展,与教育的融合不断深人,教育信息化进入2.0时代。因此,客观要求以学习者为中心,加快推动信息化背景下人才培养模式和教学方法变革,实现技术支持的“课堂革命”——智慧课堂,以契合新课改对
电弧炉炼钢的热源从单一的电能逐渐发展为电能、化学能和物理能相结合共同为电弧炉冶炼提供能量。多样化的能量输入不仅可以缩短冶炼周期还可以降低冶炼成本。合理的供能策略是确保冶炼顺利进行的首要前提,对钢铁企业来说是至关重要的。本文首先结合电弧炉的实际生产工艺,介绍了电弧炉能量输入曲线的研究现状,并分析了该方向的研究意义。然后从电弧炉电压曲线的特性入手,将电弧电压波形近似成梯形波形并进行傅里叶展开,从而完成
车辆检测和跟踪是计算机视觉的基本内容和研究热点,广泛应用于视频监控、自动驾驶和智能交通系统等领域。随着深度学习的发展,基于全卷积孪生网络(Siamese Fully-Convolutional,Siam FC)目标跟踪算法由于较快的跟踪速度受到了广泛关注,但精度偏低,仍有一定的提升空间。此外,基于机器视觉的车辆检测算法逐渐成为研究重点,而检测算法的优劣直接影响车辆跟踪效果。为提升车辆检测的精度和S
承受摩擦载荷的复销联接,其表面淬火硬化层的深度直接影响构件的使用寿命,然而形状复杂的异形曲面复销联接的表面淬火硬化层分布并不均匀,与传统金相解剖方法不同,如何快速、准确地检测此类构件表面硬化层分布,是一个亟待解决的实际问题。本研究选择一种具有复杂形状曲面的38CrSi钢复销联接作为研究对象,该构件经中频感应淬火处理获得表面硬化层,复杂的形状特征使得构件表面硬化层深度不均匀。通过对大量标准复销联接硬