【摘 要】
:
钠离子电池因为其丰富的钠储量以及和锂相似的物理化学特性,成为了在固定式储能应用领域代替锂离子电池的热门研究方向。目前,已开发的钠离子电池正极材料包括层状氧化物、隧道型氧化物、普鲁士蓝类似物和聚阴离子盐。其中,层状氧化物正极材料由于能量密度高,制备简单等优势,成为了科学家的热门研究对象。但是,当层状氧化物作为正极材料,充电到高截止电压时存在负面的相变行为和不可逆的容量衰减问题。对于本文主要探讨的铬基
论文部分内容阅读
钠离子电池因为其丰富的钠储量以及和锂相似的物理化学特性,成为了在固定式储能应用领域代替锂离子电池的热门研究方向。目前,已开发的钠离子电池正极材料包括层状氧化物、隧道型氧化物、普鲁士蓝类似物和聚阴离子盐。其中,层状氧化物正极材料由于能量密度高,制备简单等优势,成为了科学家的热门研究对象。但是,当层状氧化物作为正极材料,充电到高截止电压时存在负面的相变行为和不可逆的容量衰减问题。对于本文主要探讨的铬基层状氧化物,当Na Cr O2充电到3.8 V时,相比充电容量,放电时容量损失了近46%。铬基层状氧化物充电到高截止电压时的容量衰减是铬离子向钠层的不可逆迁移导致的。因此,提升层状正极材料的电压窗口,在提高电池能量密度的同时抑制材料的不利相变,是发展高比容量和高循环性能层状正极材料的关键。为了应对这个严峻的挑战,本文通过掺杂过渡金属阳离子,发挥多种金属阳离子在层状结构中的协同作用,来抑制铬离子的迁移,提升了铬基层状氧化物的电压窗口并取得了优异的电化学性能。本文中的主要研究结果和发现归纳如下:1、我们成功合成了新型O3相层状材料Na0.88Cr0.88Ru0.12O2,充电到3.8 V依然保持着优异的电化学性能。Na0.88Cr0.88Ru0.12O2在1.5-3.8 V电压范围内可提供156 m Ah g-1的可逆容量和高倍率性能。并且该材料展示了卓越的循环稳定性,1100圈后具有80.7%的容量保持率。我们通过实验和理论相结合的方式发现:钌掺杂可以有效抑制充电过程中铬离子的不可逆迁移,从而大幅提高了铬基层状材料在宽电压窗口内的电化学性能。2、为了进一步提升铬基层状材料的电压窗口,我们通过固相烧结法合成了Na0.88Cr0.88Ru0.08Ti0.04O2,在1.5-3.92 V的电压范围内展现了优异的电化学可逆性。该材料在1.5-3.8 V电压范围内展现了不逊于Na0.88Cr0.88Ru0.12O2的长循环寿命和高倍率性能,50 C时具有108.3 m Ah g-1比容量。当充电电压提升到3.92 V时,该材料在1 C的倍率下可提供141.3 m Ah g-1的可逆容量,并且拥有比Na0.88Cr0.88Ru0.12O2更优异的电化学可逆性和容量保持率。因此,钛掺杂可以延缓Na0.88Cr0.88Ru0.12O2的负面相变,从而进一步拓宽了铬基层状正极材料实现可逆充放电的电压窗口。
其他文献
近年来,以免疫检查点PD-1/PD-L1为靶点的免疫治疗在晚期非小细胞肺癌(non-small cell lung carcinoma,NSCLC)治疗的临床应用中取得了突破性进展,目前已被FDA批准用于晚期肺癌的一线治疗。然而,晚期NSCLC患者中仅有20%左右对PD-1/PD-L1抑制剂产生有效应答,导致这种现象的主要原因是肿瘤免疫抑制性微环境的形成。因此,探索促进肿瘤免疫抑制性微环境形成的新
长链非编码RNA(long noncoding RNAs,lncRNAs)是一类长度大于200bp的调控型非编码RNA(noncoding RNAs,nc RNAs),通常没有蛋白质编码功能或具有较低的蛋白质编码潜力。目前已发现lncRNAs是分化、发育和疾病的新兴调节因子,通过与DNA、RNA和蛋白质的相互作用,参与转录和转录后水平的基因表达调控。随着高通量测序的广泛应用,许多lncRNAs被鉴
将先秦诸子散文教学置于教学逻辑的视域下,符合新课标要求、教材编选与学习任务安排的逻辑,以及文本本身的逻辑性特征。引导学生借助逻辑思维、辩证思维等相关思维方式,进行概念的界定、判断的分析、推理与证明的审查,能够有效推进诸子散文思想解读、思路梳理、文化浸润、思辨探究等教学环节。建构符合教学逻辑的语文课堂,能够促进学生深度理解、评析诸子思想及其表达,思考诸子思想的当代意义,对于培养语文学科“思维发展与提
平衡零差探测器是测量量子信息的重要技术手段,符合计数器则是测量若干个光子在时间尺度上发生符合事件的统计计数装置,这两个装置已被广泛应用于量子密钥分发,量子态层析和量子隐形传输等研究领域。如何提高这两个探测装置的性能指标,拓展其应用功能是量子光学领域中的重要课题。本文旨在设计并研制出一款超灵敏脉冲型时域平衡零差探测器和一款高速人机交互式符合计数器,研究内容主要包括探测原理分析,器件选型,硬件电路开发
随着医疗技术的提升,医疗设备的需求也变得越来越多样化。在此条件下,基于微流控技术的医疗设备也不断研发投入使用,其中及时诊断设备(POCT)尤为突出。与传统体检中心的大型检测仪器相比,及时诊断设备具有便携化,检测速度快,设备环境及操作人员要求低的特点,在核酸检测、蛋白质检测、免疫分析和食品安全等领域都具有非常重要的研发意义。所以本文主要是基于离心微流控平台搭建了离心微流控光检测系统,通过设计样品流程
光频域反射计(optical frequency domain reflectometry,OFDR)具有高空间分辨率、高传感精度、高灵敏度的优点,在光纤链路检测、应变及形状传感、温度传感、振动传感等领域具有广泛的应用价值。但OFDR应用于应变传感时,受到光源非线性扫频效应、大应变下距离域错位等问题的制约,限制了OFDR技术更为普遍的应用。本文从OFDR应变传感原理入手,提出补偿光源扫频非线性和提
《人皆有不忍人之心》一课的教学设计,旨在带领学生体会孟子"性善论"的思想内涵,同时进行《孟子·公孙丑上》相关文章拓展研习,以达到以点带面的学习效果,使学生对我国传统文化之根有初步了解,进而激发学生阅读传统文化经典的兴趣,感受我国传统文化的魅力。
新概念武器电磁轨道炮经过原理、试验研究阶段,现在逐步向战略应用方向发展。作为电磁轨道炮的主要部件,轻质、高效的身管设计和制造成为研究该技术领域的关键。身管设计的好坏直接关系到电磁轨道炮作战效率,而电磁轨道炮身管瞬态应变、温度场分布等参数不仅是身管强度设计,寿命分析和轻量化设计的基础,而且也是设计人员比较关心的热点问题。本文首次利用基于飞秒红外激光直写的光纤布拉格光栅(fiber Bragg gra
随着科学技术的发展,现代生物学等相关学科已经把操控分子级别的生物样品作为研究重点,例如改造染色体、体外受精等,一般的操控方式的精度达不到要求,出现了更为先进的微流控技术。其中,利用光学力的方式来操控粒子的微流控技术被称为光镊。传统远场光镊通过一束高度汇聚的激光来操控一个或几个粒子,由于其存在衍射极限,无法操控尺寸小于微米的粒子。近场光镊通过倏逝场的剧烈梯度变化,可以一次处理大量纳米级别的粒子,且其
DNA纳米结构具有生物相容性好、易于化学修饰性等特点,因而被广泛应用于生物传感器,进行体内小分子、核酸等物质的检测,以实现对于疾病的监控。目前此类传感器主要分为分子信标与纳米镊子两类。但分子信标与纳米镊子均易被体内的酶降解,产生错误信号,限制了其在体内的应用。DNA纳米结构具有形状多样性、可寻址性等特点,可以引导纳米粒子进行定向排列,从而得到具有独特光学性质的复合体系。此复合体系不仅具有纳米粒子的