【摘 要】
:
工业产品加工过程中的部分生产工艺如收缩、凝固,会导致产品表面出现划痕、磨损等缺陷。传统生产工序中通常采用人工质检的方式对产品质量进行判断,这种检测方式不仅耗费人力成本,而且无法准确检测产品质量。随着制造业智能化水平的提升,基于深度学习算法的缺陷检测系统逐渐代替人工质检,提高了缺陷检测效率及劳动生产率。但这些复杂的深度学习算法大都需要部署在云端服务器进行训练,无法满足工厂离线执行的需求且难以部署至嵌
论文部分内容阅读
工业产品加工过程中的部分生产工艺如收缩、凝固,会导致产品表面出现划痕、磨损等缺陷。传统生产工序中通常采用人工质检的方式对产品质量进行判断,这种检测方式不仅耗费人力成本,而且无法准确检测产品质量。随着制造业智能化水平的提升,基于深度学习算法的缺陷检测系统逐渐代替人工质检,提高了缺陷检测效率及劳动生产率。但这些复杂的深度学习算法大都需要部署在云端服务器进行训练,无法满足工厂离线执行的需求且难以部署至嵌入式平台中。针对这些问题,本文设计了面向工业品的表面缺陷检测算法训练平台,并对检测算法进行轻量化研究,实现模型在本地的训练。具体工作如下:(1)综合考虑工厂环境及功能需求,本文提出了一种表面缺陷检测算法本地化训练平台的设计方案。通过Inception v4模型判断产品质量是否合格,并基于YOLO v5模型对产品缺陷进行识别,设计了融合这两种模型的本地化训练平台。该平台能够利用产品图像训练检测模型,辅以数据库工具存储训练任务数据,并以电路板产品数据集为例设计实验对平台进行功能测试。(2)以模型精度和模型大小作为首要条件,对检测模型进行轻量化研究,设计两种网络结构优化策略。一种是在网络训练过程中引入缩放因子来鉴别出不重要的通道对模型进行裁剪;另一种是在训练过程中对网络参数进行量化,把32位浮点数据转换为16位整型数据以节省存储空间。并在自主采集的电路板产品数据集上进行实验,结果证明了这两种优化策略能够压缩模型大小。(3)为验证模型轻量化可行性,以产品分类为例,设计了面向工业品表面缺陷检测系统的应用实例。以通用嵌入式计算架构为支撑,将检测模型参数转换为通用嵌入式工程构件,简化嵌入式人工智能中产品分类算法的应用过程,用户仅需简单操作便可在终端完成产品分类检测。本文面向工业品设计了基于深度学习表面缺陷检测算法的本地训练平台,并对检测算法进行轻量化研究,降低检测成本的同时提高检测效率,具有一定的工程应用前景。
其他文献
随着互联网信息资源的爆炸式增长,“信息过载”问题在搜索、电子商务、视频网站等众多网络应用中日益突出。作为解决“信息过载”问题的有效方法,推荐系统已经成为大数据时代的热门话题,在学术界和工业界得到了广泛的应用。目前,大多数的推荐系统都是基于用户的个人信息和历史行为数据进行推荐。然而,在许多场景下,推荐系统模型都是基于原始特征交互来获取信息,导致用户的个人信息和历史行为并没有得到充分的利用。仅仅在原始
近年来,联邦学习作为一种新的人工智能边缘计算范式引起了广泛关注。联邦学习利用多个边缘设备作为参与者来协同训练深度学习中的全局模型,并且训练的过程不会泄露任何参与方的本地数据。在典型的边缘计算场景中,联邦学习的参与者通常为异构分布,由个人电脑、智能手机、物联网设备、网络设备等各式设备组成。在设备异构的背景下,算力较弱的设备被称为掉队者,会成为联邦学习中每一个训练轮次中的瓶颈,进而限制模型总体收敛速度
基于全监督学习的目标检测在现实场景下严重依赖完整标注的数据,使得在一些现实检测场景中难以应用传统的全监督学习方法,本课题采用弱监督学习方法开展目标检测方法研究。在弱监督目标检测中由于缺乏位置标注信息,模型易使目标尤其是非刚性目标的检测结果收敛到目标最具判别性局部区域,从而导致目标的检测结果不完整。此外在进行伪标记过程中过分关注分类置信度最高的局部目标区域,使得其他正实例样本挖掘不充分。因此本文针对
软件测试是软件工程不可或缺的重要环节之一,而众包测试是软件测试的一个重要分支。在众包测试中,工人执行测试任务并提交测试报告,开发者需要对提交的测试报告进行审查和评估。由于测试报告数量众多且往往质量参差不齐,开发者在人工审查过程中将花费大量时间,直接影响了众包测试效率。近年来,出现了许多自动化技术,如聚类、分类和排序技术,以减少审查数量并提高审查效率。然而面对移动应用众测报告的文本和图像信息时,已有
目前动漫图片风格的电子游戏拥有越来越大的市场和受众。在该类游戏开发中,存在高质量的背景绘制需要耗费资源巨大的问题,该类游戏在制作过程中通常需要绘制不同时间条件下的差分图,并要求电子游戏的背景图片比一般动漫图片纹理及色彩更丰富,边缘更清晰,而现有的动漫风格图像迁移方法仅支持照片域图像向动漫图像单一时间节点域的映射,并不能很好胜任这项任务。本文在基于生成对抗网络的从照片生成动漫风格电子游戏背景图片算法
属性级情感分类任务旨在判断句子中针对某一个属性所对应的情感倾向,近年来,引起了自然语言处理领域学者的广泛关注。由于现有的相关研究大部分都是基于英文语料的,情感资源在不同语言上的分布并不均衡,跨语言的方法应运而生。跨语言属性级情感分类旨在使用源语言中的资源帮助目标语言进行属性级情感检测和分类,其核心问题在于如何实现跨语言知识的有效共享。本文针对这一问题对跨语言属性级情感分类展开研究,具体研究内容如下
基础设施的拆除和改扩建产生了巨量的建筑垃圾,建筑垃圾主要再利用方式为制作再生骨料,但是再生骨料内部存在微裂缝和孔隙,这导致其物理力学性质较天然骨料更差,产品性能更低。本文主要研究微生物矿化改性反应的主要影响因素,探讨利用该技术改性建筑垃圾的方法和改性后再生骨料的物理力学性质变化,并探索改性再生骨料在路基填料中的应用。本文主要得到以下结论:(1)通过微生物化学实验,研究各参数对脲酶活性和矿化反应过程
篇章关系识别是自然语言处理研究中的一项基础性任务,其批量处理两个相邻的论元(如子句、句子或段落,统称为论元对),并自动判别每个论元对之间的语义关系。篇章关系识别给下游任务提供了重要支撑,如阅读理解和文本摘要等。隐式篇章关系识别作为篇章分析的子任务,由于其缺少连接词,难以利用诸如“因此”这类显式且无歧义的词级线索直接判定关系类型,导致隐式篇章关系识别率难以提高。本文研究集中在隐式关系分类问题,并着力
实时操作系统以其良好的实时性和可靠性在嵌入式系统开发中得到普遍应用。但实时操作系统专业性较强,与软硬件平台高度相关,不同系统软件难以移植和复用,应用开发门槛高;同时复杂的系统内核实现导致用户工程可读性弱、编译速度低,直接影响开发效率。为此,本文以通用嵌入式计算机架构为依托,对实时操作系统的驻留进行研究,将系统内核与用户程序有效分割,提高用户工程编译速度和程序清晰度,降低应用软件开发难度。主要研究内
面向对话文本的逻辑语义关系检测研究1是自然语言处理领域的一项关键任务,准确的检测对话文本的逻辑语义关系能提高对于对话文本的整体理解,对于对话机器阅读理解[1,2]、对话自动摘要[3]、对话回应选择[4]等下游的自然语言处理任务有着极为重要的支撑作用。近年来,随着深度学习的兴起和发展,自然语言处理领域发生了极大的变化。作为自然语言处理中的一个重要的研究课题,对话逻辑语义关系检测不可避免地受到这股浪潮