论文部分内容阅读
微量陶瓷颗粒增强的铝合金具有质轻、比强度高等优点,是重要的轻量化材料。在汽车,飞机,航天等领域具有广泛的应用前景。但是陶瓷颗粒增强铝合金的基础理论依旧不够成熟,尤其是陶瓷颗粒对铝合金凝固行为的调控机制和对再结晶等过程的影响。并且大部分铝合金在实际应用中需要焊接,但是铝合金的焊接存在诸多问题,如焊后熔化区组织粗大,热影响区组织粗化导致焊接接头力学性能下降等。微量陶瓷颗粒增强的铝合金若想得到广泛的应用,其铸造成型、板材成型及连接问题急需解决。本论文以6061铝合金为基体,添加微纳米混杂尺度双相TiC-TiB2陶瓷颗粒,制备了陶瓷颗粒增强的6061铝合金。揭示了双相TiC-TiB2陶瓷颗粒对铸态6061铝合金显微组织和凝固行为的影响规律及作用机制。通过双向垂直控轧制备6061板材,研究了TiC-TiB2陶瓷颗粒对铝合金变形、再结晶的影响规律及作用机制,分析了 TiC-TiB2陶瓷颗粒对6061板材拉伸性能的影响规律及强化机制。研究了 TiC-TiB2陶瓷颗粒对TIG焊显微组织和拉伸性能的影响规律,并分析了陶瓷颗粒对焊接接头细化和强化机制。研究了 6061铝合金的搅拌摩擦处理工艺以及陶瓷颗粒对搅拌摩擦组织的影响规律及细化机制,对力学性能的影响规律及强化机制。本论文的主要创新点如下:1)揭示了双相TiC-TiB2陶瓷颗粒对铸态6061铝合金凝固行为和凝固组织的影响规律及作用机制:随着陶瓷颗粒的增加,铸态6061晶粒尺寸逐渐减小。在添加了 0.5 wt.%的陶瓷颗粒后,6061铝合金铸态晶粒尺寸从187 μm减小到了 90 μm,减小了 51.9%。调控机制:部分陶瓷颗粒作为α-Al形核的核心,提高形核率;吸附在固液界面前沿的陶瓷颗粒可以有效的抑制α-Al晶粒的长大。2)揭示了双相TiC-TiB2陶瓷颗粒对6061铝合金再结晶组织的影响规律及细化机制,对轧制板材力学性能的影响规律及强化机制:a)揭示出双相TiC-TiB2陶瓷颗粒能明显的细化6061铝合金的再结晶组织。当添加0.5 wt.%的陶瓷颗粒后,再结晶平均晶粒尺寸从19.6 μm减小到了 16.4 μm,减小了 16.4%。其主要原因为,陶瓷颗粒细化了铸态组织,使得晶界面积大幅度增加,使得位错在晶界处的塞积增强;陶瓷颗粒阻碍位错运动,在其周围形成位错缠结,诱发再结晶形核,提高了再结晶形核率。同时,抑制晶粒成大。b)揭示出双相TiC-TiB2陶瓷颗粒能明显的提高6061轧制板材的拉伸性能。当添加0.5 wt.%的TiC-TiB2后,6061铝合金的屈服和抗拉强度分别从230 MPa提高到302 MPa,从295 MPa提高到352 MPa,分别提高31.3%和19.3%,断裂应变出现轻微的减小,从19.2%减小到了 18.9%。强化机制主要为细晶强化,奥罗万强化和热错配强化,其中陶瓷颗粒和析出相的奥罗万强化起主导作用。3)揭示了双相TiC-TiB2陶瓷颗粒对6061铝合金TIG焊接头组织的影响规律及细化机制,对接头拉伸性能的影响规律及强化机制:a)揭示出双相TiC-TiB2陶瓷颗粒能明显的细化熔化区的晶粒尺寸,抑制热影响区晶粒粗化。添加0.5 wt.%的TiC-TiB2后,熔化区的晶粒尺寸从132 μm减小到120 μm,减小了 9.1%,主要是因为部分熔化母材中的陶瓷颗粒可以有效的提高α-A1形核效率。在热影响区,添加陶瓷颗粒后,晶粒的粗化程度明显减小。主要是因为陶瓷颗粒钉扎晶界,抑制了焊接热循环过程中晶界的迁移。b)揭示出双相TiC-TiB2陶瓷颗粒能明显的提高6061焊接接头的拉伸性能。在添加0.5 wt.%的TiC-TiB2后,焊接接头的屈服和抗拉强度分别从95 MPa提高到125 MPa,从167 MPa提高到182 MPa,分别提高了 31.6%和9.0%,断裂应变减少。强化机制为陶瓷颗粒的奥罗万强化,细晶强化和热错配强化,断裂应变减少的原因主要是焊接热循环导致沉淀相粗化和陶瓷颗粒团聚。4)揭示了双相TiC-TiB2陶瓷颗粒对搅拌摩擦组织的细化规律及机制,对搅拌摩擦接头力学性能的影响规律及强化机制:a)揭示了双相TiC-TiB2陶瓷颗粒对6061铝合金的搅拌摩擦组织的影响规律及细化机制。添加0.5 wt.%的TiC-TiB2后,焊核区的平均晶粒尺寸明显细化。在800 rpm下,平均晶粒尺寸从4.12 μm减小到3.37 μm,减小18.2%;在1200 rpm下,平均晶粒尺寸从3.36 μm减小到2.83 μm,减小15.8%。细化机制为大量弥散的陶瓷颗粒,阻碍了搅拌摩擦过程中晶界的迁移,从而抑制了晶粒长大;同时陶瓷颗粒诱发再结晶形核,加速了动态再结晶形核。b)揭示了双相TiC-TiB2陶瓷颗粒对6061搅拌摩擦接头力学性能的影响规律及强化机制。在添加了 0.5 wt.%的TiC-TiB2后,在800 rpm和1200 rpm下,焊核区的硬度分别从从61 HV增加到76 HV,从70 HV增加到80 HV,分别提高24.6%和14.3%。拉伸性能也明显提高,在800 rpm下,屈服强度、抗拉强度和断裂应变分别从145 MPa提高至150 MPa,从190.9 MPa提高至200.3 MPa,从22.5%提高至26.6%,分别提高3.5%,5.6%和16.4%;在1200 rpm下,屈服和抗拉强度分别从165 MPa提高至170 MPa,从207.9 MPa提高至215.9 MPa,分别提高了 9.1%和5.6%,断裂应变轻微减小。强化机制:(1)细晶强化,陶瓷颗粒的添加,使焊核区组织出现明显细化;(2)热错配强化,陶瓷颗粒周围产生的位错,使得位错密度增加;(3)弥散相强化,搅拌摩擦过程中,粗大的沉淀相被破碎,且随着塑性变形分布更加均匀。其中弥散相强化起主要作用。