【摘 要】
:
镍钴锰三元层状材料由于能量密度高、成本较低且绿色环保,被认为是动力电池领域极具前景的正极材料之一。但是由于镍钴锰三元层状材料具有热稳定性较差、阳离子混排程度高、表层结构不稳定和过高的表面碱含量等缺点,导致其循环性能差、安全性能不高等诸多问题,严重限制了其在动力电池领域中的商业化应用进程。大量研究表明镍钴锰三元层状材料的诸多问题均起源于材料/电解质界面,或者以某种方式破坏了该界面的稳定性。为了解决上
论文部分内容阅读
镍钴锰三元层状材料由于能量密度高、成本较低且绿色环保,被认为是动力电池领域极具前景的正极材料之一。但是由于镍钴锰三元层状材料具有热稳定性较差、阳离子混排程度高、表层结构不稳定和过高的表面碱含量等缺点,导致其循环性能差、安全性能不高等诸多问题,严重限制了其在动力电池领域中的商业化应用进程。大量研究表明镍钴锰三元层状材料的诸多问题均起源于材料/电解质界面,或者以某种方式破坏了该界面的稳定性。为了解决上述问题,本文选取Li4SiO4快离子导体包覆材料,对镍钴锰三元层状材料LiNi0.6Co0.2Mn0.2O2(NCM622)和LiNi0.8Co0.1Mn0.1O2(NCM811)进行表面修饰改性。研究结果如下:(1)本研究采用水解-高温固相法成功的将Li4SiO4快离子导体材料包覆在LiNi0.6Co0.2Mn0.2O2(NCM622)材料表面。XRD、SEM、和TEM等物理表征表明包覆改性后的材料本征结构并未改变;电化学数据结果显示经Li4SiO4表面修饰后三元层状材料LiNi0.6Co0.2Mn0.2O21C电流密度下的循环容量保持率由61.89%提高到84.78%,循环稳定性得到了显著的提升;5C倍率下的容量保持率提高7%,高倍率性能得到一定程度的提高。(2)本研究采用水解-高温固相法将Li4SiO4快离子材料包覆在LiNi0.8Co0.1Mn0.1O2正极材料的表面。由SEM、TEM、XRD物理表征结果证实包覆后并没有对材料的结构及形貌产生明显的影响。电化学测试结果表明修饰改性后循环稳定性、结构稳定性都有明显的改善。(3)经过Li4SiO4包覆改性后,两种三元材料的电化学性能均得到了提高,包覆材料能够抑制电解液对正极材料LiNi0.6Co0.2Mn0.2O2(NCM622)以及LiNi0.8Co0.1Mn0.1O2(NCM811)的腐蚀,避免了过渡金属离子的溶解,减少了副反应的发生和材料在空气中的暴露度,提高了材料的结构稳定性。
其他文献
广式水晶虾饺是一种以澄粉为主制备饺皮的中式面点,具有皮薄馅多、汁液丰富、面皮筋度低的特点,在冻结、贮运和复热熟化过程容易出现皮裂漏汁等品质劣化现象。为从工艺控制角度解决上述问题,本研究采取在冻藏前对虾饺进行预蒸制处理,探究不同预蒸制程度对冻融过程虾饺冻裂率、水分特性和感官品质的影响;另一方面,针对虾饺复热熟化工艺及品质不易控制的问题,对比了4种复热方式的影响,重点探讨了复热方式对淀粉老化的作用机制
随着社会的发展,对锂离子电池性能要求越来越高,传统的锂离子电池正极材料越来越难以满足市场的需求。兼具高能量密度、高比容量、低成本的富锂三元正极材料被认为是最具前景的下一代锂离子电池正极材料之一,然而其循环过程中存在的容量和电压衰退严重,首圈不可逆容量高和倍率性能差等问题,严重制约了其商业化应用。本文采用喷雾干燥和共沉淀两种不同方法合成了Li1.2Ni0.2Co0.08Mn0.52O2富锂三元材料,
在汽车传动系统中,驱动轴系统用在差速器或末端减速齿轮与车轮之间,以传递运动和动力。传动系统的转矩传递效率一直以来都是研究的热点,与发动机,变速箱的转矩损失相比,驱动轴的转矩损失相对小很多,但随着各大车企对驱动轴传递效率的关注,近年也有一些相关的研究。本文针对等速球笼式万向节,对不同节型和不同工况下的转矩传递效率进行试验对比。然后以万向节的三维数模为基础,建立了多体动力学模型,开展仿真分析,得到一些
随着人民生活水平的提高和慢性疾病谱的演变,糖尿病及其并发症已成为危害人类健康水平的世界性公共健康问题。分布在结肠的L细胞在食品功能因子刺激下分泌胰岛血糖素样肽-1(GLP-1)并通过肠-脑轴系统调控胰岛素分泌可实现机体血糖调控。针对L细胞在消化道的分布特点及特殊生物学功能,本论文提出从分子水平上调控淀粉、磷脂与β-乳球蛋白分子间相互作用并改变磷脂“分子伴侣”分布状态,设计适合人体消化道多重屏障的淀
多环芳烃(PAHs)是环境中普遍存在的典型持久性有机污染物,具有毒性和生物累积性,甚至能致癌,严重威胁生态环境,因此研发绿色有效的技术来修复PAHs污染至关重要。微生物降解是一种经济安全的治理技术,且菌群比单菌株更具应用优势,但目前关于菌群对混合PAHs的降解研究相对较少。生物炭在环境修复方面得到了广泛应用,但主要集中在生物炭对污染物的吸附去除作用,而有关生物炭协同特定微生物降解混合PAHs的报道
颗粒增强铝基复合材料(Particle reinforced aluminum matrix composites,简写为PAMCs)是一种轻质结构材料,具有低密度、高比刚度比强度、高导热导电性和尺寸稳定性等优良的综合性能,在交通运输、电子封装和航空航天等方面具有广阔的应用前景。包含多孔预制体制备和铝液浸渗两个步骤的真空压力铝液浸渗法是制备PAMCs的主要方法之一。预制体孔隙特征对铝液浸渗与PAM
由于化石燃料的过度消耗造成了能源危机和一系列环境污染的问题,氢能逐渐受到了人们的重视。在众多产氢的方法中,电催化分解水被认为是最有前途的方法,因为反应产物纯度高且过程无污染。电催化分解水由析氢反应(HER)和产氧反应(OER)组成。相比HER,OER的反应动力学缓慢限制了整个电解水技术的发展。目前,氧化铱(Ir O2)和氧化钌(Ru O2)是常用的商业OER催化剂,但低丰度和高成本使它们无法广泛应
脑机接口(Brain Computer Interface,BCI)是一种建立在大脑和外界环境之间的信息交互通道,人们可以通过它实现没有神经和肌肉参与的“意念”控制。BCI在医疗助残领域中发挥着重要作用,患有肢体残疾或其它功能障碍的病人通过BCI可以与外界进行交流,其生活水平和自理能力得到极大的提高。混合BCI是将一个脑电信号和另外一个(或多个)脑电信号(或非脑电信号)作为控制信号源的BCI,研究
随着传统化石能源储备的日益减少与工业污染,人类一直在寻找可替代的新能源以满足日益骤增的能源需求。锂离子电池作为当代新能源研发中的重要组成部分,近年来针对其正、负极材料、电解液、隔膜的研究数不胜数,使得电池的比容量、功率、充放电性能以及循环稳定性等得到大幅提升。隔膜在锂离子电池内部起到隔离正、负极以及提供离子传输微通道的作用,所以其结构与强度对电池的安全性能起到十分重要的作用。为了弥补商用电池隔膜亲
2-(4-甲氧基苯氧基)丙酸具有显著的甜味改良作用,2000年被我国批准纳入GB2760中,作为一种食品添加剂应用于月饼、糖果、冰淇淋、果酱、馅料等生产过程,在美国、巴西、欧洲多个国家和地区均有使用。本文属于国家自然科学基金项目研究内容,通过对2-(4-甲氧基苯氧基)丙酸进行分子改性,以探究其分子结构与甜味改良的构效关系,寻求更多具有高效甜味改良作用、成本低廉且没有不良异味的甜味改良物质应用于生产