论文部分内容阅读
湿法脱硫系统(Wet Flue gas desulfurization,WFGD)是燃煤电厂应用最广泛的脱硫技术。利用湿法脱硫系统来提升脱硫效率和协同除尘效率是一种经济、高效的脱除方式,有利于经济地实现燃煤电厂的“超低排放”。已有工程应用表明,脱硫塔具有一定的粉尘协同脱除作用,且通过增加强化传质构件能够提升脱硫塔对SO2的吸收和粉尘的协同脱除作用,但目前在其作用机制上尚不清晰,且缺乏对相关影响参数的影响特性及机理研究。本文基于小试实验装置,研究了空塔和筛板式喷淋塔的传质特性和协同除尘特性。通过研究筛板喷淋脱硫塔的传质特性,并与空塔喷淋脱硫塔进行比较,得到了筛板的增强传质特性。随着烟气量的增加,筛板对二氧化硫的增强吸收效率相对稳定;增强效率随着浆液循环量、入口SO2浓度和pH值的增加而增加;在相同液气比(L/G,指液体和气体的体积流量之比,单位为L/m3)下,随着烟气流量的增加而增加;筛板的孔径和孔隙率大小对SO2的增强吸收作用影响显著,随着孔隙率的降低,不同影响因素下,筛板的增强效率均得到明显提升。相对于孔隙率,不同影响因素下孔径变化对脱硫效率的增强吸收作用影响相对较少,对于5mm的小孔径其增强作用较为明显,而对于15mm和25mm的大孔径,其增强作用相对较小。入口粉尘参数和系统运行参数会影响脱硫塔的粉尘协同脱除能力。在空塔喷淋塔内,喷淋系统对小颗粒的粉尘脱除效率较低,随着颗粒粒径的增大,其脱除效率不断增高,对于20μm以上的粉尘颗粒,其脱除效率可达90%以上。在筛板喷淋塔内,脱硫塔对粉尘的脱除效果总体与空塔喷淋塔的影响趋势相似,呈现出小粒径脱除效率低,大粒径脱除效率高,但筛板喷淋塔的协同除尘性能总体略高于空塔喷淋塔。相同孔径的筛板,筛板喷淋塔的整体除尘效率随孔隙率和孔径的增大而降低。孔隙率由21.2%增加到40.82%时,除尘效率由96.1%降低到91.2%。相同孔隙率的筛板,除尘效率由孔径5mm的99.3%下降到25mm的93.3%。建立了空塔喷淋塔下的液滴群协同除尘效率模型。模型在考虑单个液滴除尘效率的同时,引入了粉尘参数(入口粉尘浓度、粉尘颗粒直径)和系统运行参数(烟气流量、浆液循环量)对除尘效率的影响,解决了传统液滴群模型不能反映脱硫塔内复杂气液流动状况对粉尘脱除影响的问题。基于泡沫层的惯性碰撞和扩散机理,引入了增强因子修正系数,建立了筛板式喷淋塔系统协同除尘效率模型,模型有效反映了脱硫塔内的泡沫层增强除尘作用,为筛板式喷淋系统协同除尘效率计算提供了依据。研究了脱硫塔出口粉尘的粒径及其形态分布。入口颗粒大小、粉尘浓度和液气比均对出口的排放产生影响。较脱硫塔入口的粒径不均匀分布,出口粉尘整体呈现出粒径分布更加均匀。脱硫塔出口粉尘颗粒中的大于5μm的颗粒几乎能够被完全脱除,对于2.5μm以上的颗粒也能够达到96%的脱除效果;对于颗粒粒径小于1μm和0.5μm的粉尘颗粒脱除效果有限。筛板喷淋塔下的出口粉尘颗粒元素含量较空塔喷淋塔的元素含量相对更低、平均粒径更小,其出口粉尘颗粒平均粒径由空塔喷淋塔下的1.15μm降低到筛板喷淋塔下的0.94μm。