论文部分内容阅读
研究目的:(1)对运动员红细胞系指标、气体代谢指标、运动能力指标进行统计分析,客观评价长时间高原训练对血液载氧与肌肉利用氧气能力的影响,评定运动员专项有氧运动能力的变化情况。(2)对多次高原训练组和初次高原训练组进行对比分析,寻找高原训练效果的差异,探索其中规律。(3)探索长时间高原训练的特点以及与运动员个体生理生化指标之间的关系和变化规律,为进一步完善赛艇高原训练与监控提供参考。研究方法:(1)研究对象与分组:以上海市男子赛艇队12名重点队员为研究对象,根据经历高原训练的次数,分为两组:A组为多次高原训练组,共6名队员;B组为初次高原训练组,共6名队员。(2)训练安排:高原训练共分为四个阶段:第一阶段(2009年1月16日-1月23日),为适应期,运动负荷是中负荷量和小负荷强度训练,第二阶段(2009年1月24日-2月12日),为负荷爬坡期,运动负荷是次大负荷量和小负荷强度训练,第三阶段(2009年2月13日-3月7日),为负荷量高峰期,运动负荷是大负荷量、中负荷强度和次大负荷强度训练,第四阶段(2009年3月8日-17日),为负荷强度高峰期,运动负荷是大负荷量、大荷强度训练。(3)测试指标:①红细胞系指标:主要包括红细胞计数(RBC)、血红蛋白(Hb)、红细胞压积(HCT)等。②气体代谢指标:主要包括绝对最大摄氧量(VO2max)、相对最大摄氧量(VO2max/kg)、最大二氧化碳呼出量(VCO2max)、最大摄氧量平台(VO2maxPD)、无氧阈摄氧量(AT-VO2)、无氧阈心率(AT-HR)等。③专项运动有氧能力指标:测功仪2km、6km、六级递增负荷测试中的分段平均速度(平均功率)、分段桨频、总成绩、血乳(Bla)酸、心率(HR)等。(4)统计方法:所有数据均采用SPSS13.0统计软件和Microsoft Excel 2003软件进行处理分析,结果以平均数±标准差(X±SD)表示。选用One-Way Analysis of Variance和Paired-Samples t Test两种方法进行统计处理。P<0.05为差异性显著, P<0.01为差异性非常显著。研究结果:(1)红细胞系变化:进入高原第一周运动员整体Hb水平下降了5.81%,B组下降幅度大于A组,第二周开始逐渐升高,在第四周出现峰值,较高原前上升9.68%,A组Hb升高了11.18%,B组升高6.92%,在下高原后的第一周Hb稍有下降,均高于高原前水平,第二周达到峰值较高原前上升10.32%。A组升高了9.87%,B组升高9.43%;升高幅度大于B组。(2)有氧代谢能力变化:高原后测试发现:运动员气体代谢指标VO2max、VO2max/kg、VCO2max下降了5.08%、2.51%、9.14%。B组下降幅度要大于A组; VO2maxTp、Time-max提高了41.18%、0.32%;A组提高了66.7%、4.32%,B组VO2maxTp提高了17.4%,而Time-max却下降了5.40%。无氧阈指标AT-HR、AT-HRmax%降低了2.72%、3.40%,B组下降的幅度大于A组, AT-VO2max、AT-Time分别提高了2.96% (P>0.05)、3.92%(P<0.01),B组提高的幅度大于A组。(3)专项运动能力变化:①测功仪2km:在高原训练后,测功仪2km的成绩提高了1.88%、。即刻血Bla提高了5.89%。A组成绩提高了2.78%(P<0.01)。B组提高了0.98%(P>0.05)。运动后即刻Bla:A组提高了0.59%, B组提高了11.17%。②测功仪6km:高原训练后与高原训练前相比,成绩提高1.86%(P<0.01),即刻Bla提高了21.34%(p<0.05)。A组即刻Bla提高了31.92%(P<0.05)。B组提高了7.93%(P>0.05),两组成绩均提高了1.89%(P<0.05)。③六级测试:经高原后测试发现,无氧阈水平下的运动强度增大,乳酸—运动强度曲线发生明显的右移;有氧运动能力增强,B组的提高幅度大于A组。研究结论:(1)、在8周高原训练后,Hb、RBC等指标出现较高的水平,保持的时间较长;说明机体携带氧气的能力增强。运动员VO2max等指标稍有下降,无氧阈指标提高,运动时间延长,表明运动员在中、高等运动强度下的摄取和利用氧气的能力增强,而在最大运动强度下机体的有氧代谢能力未见提高。同时,运动员专项有氧运动能力与一般有氧运动能力均得到了很好的提高。(2)、8周高原训练对初次高原训练组和多次高原训练组有氧运动能力有所提高,初次高原训练组中低等运动强度下的有氧代谢能力提高明显,而多次高原训练组高等强度运动下有氧代谢能力提高显著,这可能是由于:经过多次高原训练组的运动员,对高原环境较为适应性,当环境改变时,机体可以通过自身代谢,功能和结构的改变来做出相适应的调节。