基于参数网格优化的辐射源直接定位方法研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:heck502
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着无线电定位技术被广泛应用于更加复杂的定位场景(如室内场景、观测资源受限场景等),传统的两步定位法逐渐暴露出定位精度不足、分辨能力受限等问题。针对两步定位法的次优性,研究者们提出了一种新兴的最优定位方法——直接定位(Direct Position Determination,DPD)法。DPD联合所有测量,直接从测量中估计目标位置,避免了两步定位法因分步处理导致的信息损失,可以显著提高系统在复杂定位场景中的定位性能,是无线电定位研究前沿的热点之一。DPD作为新兴方法,在理论完善和工程实现方面,仍然存在诸多亟待解决的问题,例如,多目标直接定位的维数灾难、穷举搜索参数空间导致的高复杂度,以及参数空间网格化带来的量化误差等。针对以上问题,本论文从优化参数网格的角度入手,研究了不同定位场景中的辐射源DPD方法,以及DPD方法在室内通信系统上的工程应用方案。本论文的主要工作和贡献摘要如下:(1)基于动态位置网格建立了室内直接定位模型,在稀疏贝叶斯学习框架下,结合期望最大化算法和梯度下降算法,提出了基于稀疏贝叶斯学习的室内直接定位算法,联合解决了模型阶数和参数的最大似然估计问题以及量化误差消除问题,比现有基于固定网格的直接定位算法具备更强的多径干扰抑制能力和更高的定位性能。(2)针对辐射源的间歇辐射特性,在移动单阵列接收的直接定位模型中引入辐射源状态参数,并利用辐射状态的二元性,基于K均值聚类算法解耦辐射源状态参数与位置参数,提出了基于MVDR的多间歇辐射源直接定位算法,以辐射源空间位置作为信号关联依据,联合解决“间歇信号——辐射源”关联问题和辐射源定位问题。与现有基于交替投影的直接定位算法相比,所提算法不依赖目标数目和目标位置的初始估计,具有更强的实用性。(3)借助Pincus理论将多目标最大似然直接定位问题转化为多个单目标位置期望估计问题,并利用重要性采样方法,以随机参数采样代替参数遍历搜索,在生成的随机参数网格上估计位置期望,提出了基于重要性采样的多目标直接定位算法,较好地解决了多维穷举搜索的高复杂度问题和参数网格的量化误差问题,在观测资源有限的条件下,比现有的常规解耦直接定位方法具有更高的定位精度。(4)提出了基于快速傅里叶变换的时差直接定位算法及其在室内定位场景中的工程应用方案,将DPD位置谱的计算量降低两个数量级,与目前使用的两步定位法相比,在同一复杂度水平上显著提升了定位性能。以上提出的DPD算法和工程应用方案,已通过仿真实验和室内通信系统实测数据测试验证。
其他文献
万伏级超高压功率器件主要应用在高压直流输电、全电化舰船、高能激光武器等领域。尽管硅(Si)器件通过串联形式可以将模块电压做到10 kV以上,但是元器件数量多,拓扑结构繁杂,寄生效应增多,极大地制约了超高压大功率电力电子装置的性能。以碳化硅(SiC)器件为代表的宽禁带功率半导体器件凭借其高耐压、低损耗、高热导率等优势,在超高压大功率电力电子应用领域展现出巨大的潜力。SiC功率器件被誉为带动“新能源革
Ⅵ族半导体材料——过渡金属硫化物(TMD)由于其突出的性能,吸引了大量光电子学和物理学研究者的兴趣。在TMD众多的优异性能中,直接带隙、大激子束缚能和室温下腔极化激元的形成等特征在光电子领域尤为重要。这些独特的性质为下一代光电子器件、谷电子学、自旋电子学和光-物质耦合的应用铺平了道路。在二维的Ⅵ族TMD中,电子和空穴以0.5-1meV的高束缚能结合在一起,这些紧束缚的激子可以在室温下和光子强耦合,
在未来军事电磁频谱战中,雷达通常工作于复杂电磁环境中,外部干扰信号从雷达天线波束主瓣进入接收机,形成欺骗或压制干扰,严重降低了雷达系统性能。因此,如何对抗主瓣干扰,提升复杂电磁环境下的雷达探测能力,是电磁频谱战中获取制电磁权的核心关键之一。近年来,认知雷达通过发射波形和接收处理的连续协同反馈,掌握了空间、时间、频率、极化等维度“捷变”的主动性,具有抗主瓣干扰的巨大潜力和优势。因此,本文围绕认知雷达
目前,毫米波及亚毫米波的开发和利用已成为微波技术发展的重点方向之一。而微波器件的研究又是微波技术发展的基础和前提。在毫米波及亚毫米波段,电真空器件是最有可能产生大功率的微波器件。但是当电真空器件向着该波段发展的时候也遇到了非常大的困难。首先传统的电真空器件如返波管、速调管、磁控管等,由于它们在毫米波及亚毫米波段受到尺寸共度效应的影响,其高频结构的尺寸和功率容量都将急剧缩小,并且也给结构加工带来非常
在微波无线通信技术突飞猛进的发展中,近年,能融合滤波器和其它微波无源器件功能的微波无源频率选择电路因其小型化优势而愈发受到关注。同时,为了满足现代无线通信系统多种通信标准的要求,对频率选择电路进行多频带研究也成为了一个逐渐活跃的研究分支。作为一种易于集成的平面电路,基片集成波导(substrate integrated waveguide,SIW)技术为高性能、平面化、低成本、易于集成的微波无源电
大功率太赫兹波系统由功率源、传输系统以及发射系统组成,在通信、雷达、成像和医学等方面具有深厚的开发潜力。其中传输系统包括输入输出系统、模式变换器和低损耗传输系统等,是大功率太赫兹波能否有效应用的关键。本文主要工作内容为设计一个波导传输系统,将输出模式为TE03模式,工作频率为220 GHz的回旋振荡器输出的太赫兹信号传输到回旋放大器的输入口。对系统中的圆波导模式变换器、转向传输器和输入系统中的关键
随着物联网、区块链、人工智能、6G时代的到来,具有体薄量轻、功耗低、可柔性化等优势的有机半导体器件对于新型显示、光电探测和传感技术等领域的发展起着越来越重要的作用。迄今为止,以有机发光二极管(Organic light-emitting diode,OLED)、有机光电探测器(Organic photodetector,OPD)和有机薄膜晶体管(Organic thin-film transist
随着现代战争数字化程度的提升,具有不同作战目的的射频无线系统大量应用于军事作战平台中,随之产生的系统复杂化、平台隐身性以及电磁兼容等问题亟待解决。于是射频综合一体化系统应运而生,成为解决上述问题的有效途径,它能够将通信、雷达、电子战等多种功能集成在一个射频系统中,可以实现硬件和信息资源的高度共享。对于需要同时实现不同作战任务和覆盖多个工作频段的射频综合一体化系统,通过可重构技术能够在同一射频硬件平
电力电子技术作为电能转换和传输的关键技术,推动着电动汽车、高铁等绿色产业和产品的快速发展。而绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)凭借着高输入阻抗和低导通压降的特点,成为了电力电子技术中不可缺少的核心功率器件。随着全球对节能、减排、低碳环保的不断追求,IGBT已成为功率器件中最重要的核心器件之一。为实现电力电子系统智能化、集成化和小型化,
目标与通常为粗糙面的复杂环境之间的复合电磁散射问题是计算电磁学中一项极具挑战性的课题,在微波遥感等诸多领域具有重要的理论意义和工程应用价值。在诸多计算电磁学方法中,高频方法以其高效性和精确性一直受到广泛的关注和研究。本文围绕高频方法,特别是弹跳射线法(Shooting and Bouncing Ray,SBR)针对粗糙面和目标复合电磁散射问题进行研究。本文的主要工作和创新点可以归纳为以下几个方面。