论文部分内容阅读
我国处于现代化建设快速发展阶段,在未来长时间之内,煤炭的能源主体地位不会改变。煤炭开采促进区域经济、社会发展的同时,也对区域生态环境造成严重的负面影响,其中最突出的表现就是地面沉降及其生态扰动。地面沉降研究的首要任务是对地面沉降高精度、高效率和周期性的监测,获取尽可能“真实”的地面沉降规律。相对于传统监测方法,Interferometry Synthetic Aperture Radar(In SAR)技术通过多次过境的SAR影像相位差来监测地面沉降,呈现出全天候、全天时、大范围、低成本、高精度等优点。在此基础上发展的差分雷达干涉技术和多时相In SAR技术,应用领域已逐步扩展到地震、火山、滑坡等领域。受复杂地质采矿条件影响,黄土高原矿区地面沉降形成机制复杂,传统的技术手段和预测模型很难实现理想的地面沉降监测和预计。同时,黄土高原属于生态敏感区,煤炭开采带来的生态扰动更为深远、更不可逆,黄土高原矿区层面的生态扰动时序特征和生态修复尚无模式可循。为此,论文在文献综述和野外调查的基础上,以轩岗采煤沉陷区为试验区,综合应用采煤沉陷学、地质学、生态学、遥感科学等多学科理论,围绕复杂采煤条件下黄土高原矿区地面沉降和生态扰动展开研究。论文主要取得以下研究成果和结论:(1)揭示了复杂采煤条件下黄土高原矿区地面沉降时空演变规律。SBAS-In SAR(Small Baseline Subsets In SAR)方法是黄土高原矿区地面沉降监测的可靠方法。煤炭井工开采导致的地面沉降具有时间累积效应,在停采线一侧地面沉降曲线相对较缓,地面沉降量与采煤工作面推进方向和距离有显著关系。轩岗采煤沉陷区煤炭井工开采面上扰动系数为24.55。沉降加速期和沉降衰退期占总沉降时间的58.62%,沉降量占总沉降量的75.95%。地质构造和重复采动是影响黄土高原煤炭井工开采矿区地面沉降的重要因素。(2)建立了耦合SBAS-In SAR地面沉降监测值的Knothe时间函数改进模型,用于估计已发生的地面沉降和预计尚未发生的地面沉降。与Knothe时间函数模型相比,耦合SBAS-In SAR地面沉降监测值的Knothe时间函数改进模型大大提高了监测期内任意时刻地面沉降值的估计精度。基于Knothe时间函数改进模型预计的剖面线地面沉降的变化趋势与基于SBAS-In SAR地面沉降监测值的变化趋势保持一致。(3)选取植被数量、植被质量、空间分布和生态系统服务价值等指标,定量分析了采煤沉陷生态扰动时序特征。1986-2018年间轩岗采煤沉陷区植被覆盖区域面积呈减少态势,工矿用地面积呈增加态势,植被质量呈现出先降后升的变化趋势。植被空间关联指数呈现出急速下降、缓慢下降、波动上升的变化趋势,具有一定的时间滞后效应。生态系统服务价值呈现波动减小趋势,减少速度与煤炭开采规模呈正相关。1986-2018年间轩岗采煤沉陷区生态服务价值在1.12~1.35亿元之间波动,总体呈现减少态势。2006年之后轩岗采煤沉陷区生态服务价值加速减小,大规模煤炭开采是采煤沉陷区生态服务价值锐减的主要原因。(4)构建了基于采煤工作面的全过程、闭环式生态修复分析框架。界定了采煤沉陷生态修复具体含义,阐明了采煤沉陷生态修复主要原则,提出了适用于采煤沉陷区生态修复的土壤保持生态效益测算方法。以轩岗采煤沉陷区为例,在分析采煤沉陷区空间分布范围和地类属性的基础上,明确沙棘潜在种植区,核算生态效益和经济效益,为黄土高原采煤沉陷生态修复路径选择提供基础理论与技术支撑。