论文部分内容阅读
掺铒光波导放大器(EDWA)是未来微光子系统的重要组件之一,Er:LiNbO3晶体作为EDWA的基体材料具有稳定性高和集成性能好等优点,并可以将Er3+离子的激光性能和LiNbO3晶体的非线性光学性能结合在一起。Er:LiNbO3晶体发射的1.54μm波段近红外发光对应现代光纤通信的标准“窗口”波长。然而,Er:LiNbO3晶体的光损伤效应限制了晶体的实际应用。本论文选择不同价态Zn2+,In3+和Zr4+离子提高晶体的光损伤性能,研究了不同价态抗光损伤离子对Er:LiNbO3晶体缺陷结构和光学性能的影响,为获得高效率1.54μm波段近红外发光提供了理论依据和实验指导。采用第一性原理的方法,研究了Zn2+,In3+和Zr4+离子掺杂LiNbO3晶体的几何结构。结果表明,Zn2+,In3+和Zr4+离子在晶体中均优先占据Li位。研究了Zn2+,In3+和Zr4+离子在Li位上的稳定性,认为在Er:LiNbO3晶体中,Zn2+离子会促使Er3+离子进入Nb位,形成Er3+离子团位束。In3+离子对Er3+离子占位影响不大。Zr4+离子在Li位上稳定性较低,易于进入Nb位,使Er3+离子继续占据Li位。采用Czochralski方法生长了Er:LiNbO3晶体,通过研究不同浓度Er3+离子掺杂同成分LiNbO3晶体的缺陷结构和不同激发波长下的近红外发射光谱,上转换发射光谱和上转换布局机制,提出了Er3+离子占位与光学性能的关系,即Er:LiNbO3晶体中Er3+离子团位束的形成增大了交叉弛豫的发生概率,在980nm激发光源下,Er3+离子团位束会抑制1.54μm波段近红外发光。研究了不同[Li]/[Nb]比(分别为0.94,1和1.25)对Er:LiNbO3晶体缺陷结构和光学性能的影响。结果显示,当[Li]/[Nb]=1时,Er:LiNbO3晶体中的Er3+离子团位束被解离,发射高效率的1.54μm波段近红外发光。研究了Er3+(3mol%)/Zn2+(3,6和7mol%):LiNbO3晶体的缺陷结构和光学性能,结果显示,Er3+离子并未影响Zn2+离子在晶体中的阈值浓度;当Zn2+离子掺杂浓度低于其阈值浓度时,晶体中的Er3+离子团位束被解离,引起了1.54μm波段近红外发光的增强;当Zn2+离子掺杂浓度高于其阈值浓度时,晶体中会再次形成Er3+离子团位束,导致1.54μm波段近红外发光降低。结合第一性原理计算结果和Er3+离子占位和光学性能的关系,生长了Zn2+/Er3+摩尔比例为3/1.5(mol%/mol%),6/1(mol%/mol%)和7/1.5(mol%/mol%)的Zn/Er:LiNbO3晶体。光学测试结果表明Zn/E(r6mol%/1mol%):LiNbO3晶体具有最强的1.54μm波段近红外发光。Zn/Er:LiNbO3晶体的OH-吸收峰Lorentz三峰分解和上转换绿光寿命测试结果表明,Zn2+离子促使Er3+离子在低于其阈值浓度时从Li位进入Nb位,在晶体中形成了Er3+离子团位束。研究了In/Yb/Er:LiNbO3晶体(In3+离子掺杂浓度为1,2和3mol%)的缺陷结构和光学性能。研究发现,Yb3+和Er3+离子共掺降低了In3+离子的阈值浓度;当In3+离子达到阈值浓度时,晶体中形成Er3+离子团位束。由于Yb3+离子的敏化作用,In/Yb/Er:LiNbO3晶体中Er3+离子团位束的形成有利于1.54μm波段近红外发光。In3+离子掺杂浓度为阈值浓度时,晶体1.54μm波段发射最强。Zr/Er:LiNbO3和Zr/Yb/Er:LiNbO3晶体近红外发射光谱测试结果显示Zr4+离子提高了1.54μm波段近红外发射效率。通过晶体Raman光谱和Er3+离子4I11/2→4I15/2跃迁在1020nm处的衰减曲线测试结果分析了Zr4+离子增强近红外发光强度的机理是晶体最大声子能量的增大。不同价态Zn2+,In3+和Zr4+离子掺杂Yb/Er:LiNbO3晶体的1.54μm波段发射性能结果显示,Zn2+离子降低了1.54μm波段发射,In3+离子对此波段发光没有影响,Zr4+离子大幅度增强了1.54μm波段发射。因此Zr/Yb/Er: LiNbO3晶体将成为最有前景的优良波导器件基质材料。采用Judd-Ofelt理论研究了Zn2+, In3+和Zr4+离子掺杂Er:LiNbO3和Yb/E r:LiN bO3晶体的光谱性质,Zr/Yb/Er:LiNbO3晶体具有最大的光学品质因子值。通过McCumber和Füchtbauer-Ladenburg理论分析了抗光损伤离子掺杂Er:LiNbO3和Yb/Er:Li NbO3晶体1.54μm波段的发射性能,结果显示,晶体均具有大的发射截面积,适合作为EDWA的基体材料。