HA/胶原复合多孔贯通骨植入支架材料的制备及其性能研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:tdsc110
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
创伤、炎症以及感染所引起的骨缺损在临床上非常见,骨缺损严重影响患者的日常生活。而骨植入材料可以有效达到治疗的目的。尤其骨植入材料具备克服自、异体骨的缺陷,修复大面积骨缺损,无致病性等优点。本研究基于静电纺丝及浸渍技术制备模拟骨微观成分的HA/胶原复合微纳米纤维薄膜,拟设计搭建成分与结构仿生的三维多孔贯通结构骨植入支架材料。通过表面形貌表征(SEM)、物相分析(XRD)、力学性能测试、生物学性能测试(模拟矿化、降解与细胞活性(CCK-8)),依次探讨了静电纺丝工艺参数对纤维形貌的影响,收集速度对复合纤维有序度的影响,以及高温烧结、浸渍工艺对复合纤维形貌的影响,并模拟不同矿化时间的骨植入支架料料的力学性能变化,最后研究了该骨植入支架材料的生物性能。取得的主要成果如下:(1)聚乙烯吡咯烷酮(PVP)浓度为8wt%,羟基磷灰石(HA)含量为7wt%时,静电纺丝制备的HA/PVP复合微纳米纤维直径分布较为均匀,在500~600nm之间;烧结温度为550℃,保温时间为2h时,煅烧获得尺寸均匀的HA微纳米陶瓷纤维;收集转速2700r/min时,纤维有序度达到75%,定向排列效果最好。(2)浸渍胶原的最佳浓度4wt%,浸渍2次,交联剂戊二醛浓度25%时,制备的HA/胶原复合微纳米纤维连续性良好,纤维较为均匀;模拟矿化6h时,Ca/P达1.42,材料表面生成大量的HA,证明HA/胶原复合微纳米纤维具有良好的生物相容性;材料的亲水角为59.43°,材料亲水性较好,有利于细胞的黏附与生长;材料在10×PBS中降解不同时间,随着时间的增加,材料质量逐渐降低,降解6h时失重率达到16.13%,为细胞的生长提供了足够的空间;降解过程中PH值基本稳定在7.10。(3)获得的支架材料的孔隙率在79%~88%之间,满足骨植入材料对孔隙率的要求:材料模拟矿化后力学性能提升,抗压强度从4.27Mpa提升到6.54MPa,在材料植入人体的初期,具备一定的力学支撑;CCK-8分析结果支架材料对骨髓间充干细胞(MSCs)细胞无毒(毒性等级为0级),MSCs能够良好的黏附与增殖。
其他文献
信息产业与新型绿色能源产业是目前人类的两大支柱产业,硅单晶作为两大支柱产业的基础材料尤为重要。随着集成电路和光伏产业的快速发展,对硅单晶的外形尺寸和晶体品质提出了更高的要求。然而,硅单晶的生长过程是一个具有非线性、强耦合、大迟滞和不确定性模型的动态时变过程,传统的控制方法难以确保晶体的品质满足实际的工业要求。因此,研究硅单晶品质预测控制具有重要价值及实际意义。本文从数据驱动建模和控制的角度,提出了
随着集成电路和工艺技术的发展,伴随着应用需求的提升,集成在单块芯片上的内核和处理元件数量愈来愈多,片上节点数量的增加导致网络延迟问题已不可忽视。为了改善众核网络中时效性和灵活性不佳的问题,研究并优化NoC结构非常重要。在对比分析NoC架构及总线传输架构系统性能的基础上,重点从NoC的拓扑结构、路由算法和流控机制三个方面开展相关研究,构建了多链路无堵塞可旁路环形NoC架构。首先,根据网络高吞吐量和低
随着工业技术的不断进步和发展,生活噪声与工业噪声对人们的影响逐渐加大。长期处于噪声的环境中会对人们的身体和精神健康产生巨大的负面影响。如何有效的降低噪声污染成为了人们迫切需要解决的难题。传统的被动降噪方法,对中低频噪声的消除作用不大,要想获得更好的降噪效果需要增加噪声吸收系统的体积。主动噪声控制方法作为一种新的降噪手段,针对中低频噪声有非常好的降噪效果,并且具有体积小,适用范围广等优点,引起了众多
976nm波段大功率半导体激光器提供的泵浦光能量与掺镱光纤激光器吸收峰匹配,在光纤激光器泵浦领域得到广泛应用,关于激光芯片的工程化研究成为近年激光器的研究热点之一。本文以976nm量子阱激光器为研究对象,从结构分析、仿真模拟、实验测试、等效电路建模四个方面开展研究,主要的工作内容和研究成果包括:第一,理论分析了有源区组分和厚度、波导层结构以及腔长、非注入窗口等参数对激光器特性的影响规律,为提升输出
有机光电倍增探测器因其高外量子效率(External Quantum Efficiency,EQE)成为人们的研究热点。陷阱掺杂是实现有机光电探测器电流倍增的一种重要方法,但其目前还存在着陷阱掺杂浓度低的问题。为解决上述问题,论文采用在三元体异质结P3HT:PTB7:PC61BM活性层体系中掺杂两种电子陷阱的双掺杂方法。论文首先研究了单掺杂C70陷阱的有机光电倍增探测器。实验表明:掺杂2.5wt%
超构材料是一种人工按照周期排列进行合成的电磁材料,与自然界中的材料相比,具有一系列不同寻常的电磁特性,在很多领域得到了广泛关注与应用。但传统的多频带天线设计方法会因寄生枝节的增加天线尺寸变大,对器件的小型化产生一定影响在某种程度上了限制了天线的应用。本文针对这个问题,以超构材料为基本主题,设计实现了两款小型化五频带天线。超宽带技术因具有系统容量大、传输速率快等优点有着广泛地应用,但在超宽带技术的工
太赫兹波通常被定义为频率在100 GHz-10 THz之间,具有特殊电磁特性的电磁波。太赫兹技术是一个非常重要的交叉前沿领域,广泛应用于成像系统,安检及雷达领域中。由于自然界中许多生物大分子的振动和旋转频率均处于太赫兹频段,因此太赫兹技术为生物信息检测提供了一种强有力的手段。由于太赫兹超材料吸收器可以有效地提升检测效果,因此超材料吸收器在制备高灵敏度生物化学传感器方面具有很大的潜力。其中全介质超材
激光在大气中传输时,因受到大气分子以及气溶胶粒子的吸收、散射等影响而发生衰减。不同的天气现象会对激光的传输产生不同的影响,特别是在雾环境下激光的传输会受到严重影响。本文围绕激光在大气中的传输衰减特性展开了研究,为分析激光的传输衰减系数,搭建了激光的传输衰减实验系统。分析比较通过实验数据计算得到的衰减系数与经典模型的衰减系数,并计算两者的均方根误差,对经典模型在西安地区的适用性进行了分析。具体研究内
皮秒光电导开关(Photoconductive Seiconductor Sitches,PCSS)兼具高功率和高重复率双重特性,较之脉冲功率技术中的常规开关具有皮秒级响应、兆瓦量级功率密度、寄生电感电容小、弱光触发等优势,在超快光电子学太赫兹技术和高功率脉冲领域具有极其广泛的应用前景,包括有太赫兹波辐射和探测、高功率微波源、粒子加速器和定向能系统等。PCSS暗态电阻率是影响开关耐压性能的一
无线通信技术的发展,使得正交频分复用(Orth ogonal Frequency Division Multiplexing,OFDM)技术得到了越来越广泛的应用。由于电磁环境的复杂性,所传输的OFDM信号带内极易串入其他通信信号。当传输信号和信道的特征不明确时,传统的干扰抑制方法往往无法有效地对OFDM信号带内的干扰分量进行分离或抑制,获取所需要的有用信号。本文以信号的稀疏表示理论为基础对OFD